当前位置: 首页 > news >正文

[Vision Board创客营]--使用openmv识别阿尼亚

文章目录

  • [Vision Board创客营]使用openmv识别阿尼亚
    • 介绍
    • 环境搭建
    • 训练模型
      • 上传图片
      • 生成模型
    • 使用
    • 结语

[Vision Board创客营]使用openmv识别阿尼亚

🚀🚀五一和女朋友去看了《间谍过家家 代号:白》,入坑二刺螈(QQ头像也换阿尼亚了😄 😆 😊 😃),刚好不知道做什么项目来交作业,突然想到可以做一个阿尼亚识别器,于是有了这篇文章。

🚀🚀水平较菜,大佬轻喷。😰😰😰

介绍

🚀🚀Vision-Board 开发板是 RT-Thread 推出基于瑞萨 Cortex-M85 架构 RA8D1 芯片,为工程师们提供了一个灵活、全面的开发平台,助力开发者在机器视觉领域获得更深层次的体验。

🚀🚀Vision Board搭载全球首颗 480 MHz Arm Cortex-M85芯片,拥有Helium和TrustZone技术的加持。SDK包里集成了OpenMV机器视觉例程,配合MicroPython 解释器,使其可以流畅地开发机器视觉应用。

img

环境搭建

🚀🚀环境搭建可以查看这个Vision Board 环境搭建文档(https://docs.qq.com/doc/DY2hkbVdiSGV1S3JM),特别需要注意的就是,版本一定要新,我使用之前老版的RASC是不行的,如果开发过程中遇到奇奇怪怪的问题,可以首先检查自己版本的问题。

🚀🚀我们使用openmv只需要烧录官方的openmv demo就好了,官方视频教程以及文档已经很详细了,我就不重复介绍了,只需要把demo烧录进来就好了。

训练模型

🚀🚀训练模型我们使用的是edge impulse (https://studio.edgeimpulse.com/),首先准备大量的阿尼亚图片作为数据集,这里我测试的时候只选了11张,肯定是太少了,大家可以多几张,这样效果会更准确,识别精度更高,我这里只是测试学习用的,大家请勿模仿。

在这里插入图片描述

🚀🚀然后我们还需要准备一份其他的图片用来训练,因为训练模型必须两类及以上,这里我选择了几张花园宝宝的图片(就不一一展示了),大家可以自己更换其他的:

在这里插入图片描述

🚀🚀之后我们进入edge impulse,进行简单的设置,选择One label per data item(每个数据项一个标签)以及M7,然后就可以上传图片进行训练了。

在这里插入图片描述

上传图片

🚀🚀选择图片进行上传,我们先上传阿尼亚的图片。

🚀🚀这个地方注意,如果上传失败,大概率网络问题,要关闭加速器(神奇,我特地开的加速器😰)。

在这里插入图片描述

🚀🚀再上传其他的,如下所示:

在这里插入图片描述

生成模型

🚀🚀之后就到impulse design里面训练模型,差不多一直默认就好,比较简单。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

🚀🚀训练结束就好了,然后直接生成模型。

在这里插入图片描述

🚀🚀就会有一个压缩包下载,我们打开压缩包就能发现模型,到这里,训练模型部分就结束了。

在这里插入图片描述

使用

🚀🚀然后我们把labels.txt和trained.tflite放入openmv的SD里面去,同时需要新建一个captures文件夹用来存放图片,复制py文件到openmv IDE 里面去,就可以直接运行了,这里我对自动生成的程序做了一点修改,加上了LED灯,拍摄以及红框,结果如下(简陋的代码,甚至没封装,太懒了😭😭😭):

# This work is licensed under the MIT license.
# Copyright (c) 2013-2023 OpenMV LLC. All rights reserved.
# https://github.com/openmv/openmv/blob/master/LICENSE
#
# Hello World Example
#
# Welcome to the OpenMV IDE! Click on the green run arrow button below to run the script!import sensor, image, time, os, tf, uos, gc
from machine import LEDsensor.reset()                         # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240))       # Set 240x240 window.
sensor.skip_frames(time=2000)          # Let the camera adjust.net = None
labels = None
led = LED("LED_BLUE")try:# load the model, alloc the model file on the heap if we have at least 64K free after loadingnet = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')try:labels = [line.rstrip('\n') for line in open("labels.txt")]
except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')clock = time.clock()last_capture_time = time.time()
while(True):clock.tick()img = sensor.snapshot()for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):img.draw_rectangle(obj.rect())# This combines the labels and confidence values into a list of tuplespredictions_list = list(zip(labels, obj.output()))x1, y1, w1, h1 = obj.rect()margin = 10  # 设置一个边距,避免紧贴头像边缘x1 += marginy1 += marginw1 -= margin * 2h1 -= margin * 2if (predictions_list[0][1] > 0.95):img.draw_rectangle((x1, y1, w1, h1), color=(255, 0, 0))  # 在检测到的对象周围绘制红色矩形框led.on()print("Anya")print("********")if time.time() - last_capture_time >= 2:  # 检查距离上次拍照是否已经超过两秒img.save("/captures/Anya_capture_%s.jpg" % str(time.time()))  # 使用时间戳作为文件名保存图片last_capture_time = time.time()  # 更新上次拍照时间print("Shooting a photo of Anya was successful")else:led.off()print("Other")print("********")

🚀🚀然后我们运行看一下结果:

🚀🚀我们注意到4个地方,一个是终端打印了Anya,第二个是拍照功能,第三个是红框,第四个是LED灯亮了。

在这里插入图片描述

🚀🚀我们打开文件夹看一下拍摄的图片:

在这里插入图片描述

🚀🚀差不多到这里就结束了,模型训练其实还不是很准,大家可以多高一点数据集,不要像我这样懒。

结语

🚀🚀因为是第一次接触,所以很多地方不太懂,请大家见谅,不过这个确实很好玩,哈哈哈!

相关文章:

[Vision Board创客营]--使用openmv识别阿尼亚

文章目录 [Vision Board创客营]使用openmv识别阿尼亚介绍环境搭建训练模型上传图片生成模型 使用结语 [Vision Board创客营]使用openmv识别阿尼亚 🚀🚀五一和女朋友去看了《间谍过家家 代号:白》,入坑二刺螈(QQ头像也换…...

【Linux:lesson1】的基本指令

🎁个人主页:我们的五年 🔍系列专栏:Linux课程学习 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 🚗打开Xshell,登陆root…...

20240511日记

今天工作内容: 1.二期2号机EAP测试 2.二期开门机器暂停(停轴,停流水线电机),关闭门后继续功能测试 3.针点位偏移还需要调整,未进行大批量验证是否偏移(S3模板点位测试,两台机各焊…...

蓝桥杯成绩已出

蓝桥杯的成绩早就已经出来了,虽然没有十分惊艳 ,但是对于最终的结果我是心满意足的,感谢各位的陪伴,关于蓝桥杯的刷题笔记我已经坚持更新了49篇,但是现在即将会告别一段落,人生即将进入下一个规划。我们一起…...

.kat6.l6st6r勒索病毒数据怎么处理|数据解密恢复

导言: 在数字时代的洪流中,网络安全领域的新挑战层出不穷。近期,.kat6.l6st6r勒索病毒的出现再次打破了传统安全防护的界限。这种新型勒索病毒不仅具有高超的加密技术,更以其独特的传播方式和隐蔽性,给全球用户带来了…...

Spring Batch 是什么?主要用于什么场景?

Spring Batch是一个开源的、基于Spring框架的批量处理框架,它提供了一系列用于批量数据处理的工具和API。Spring Batch的主要目标是简化和标准化批量数据的处理过程,使得开发者可以更加专注于业务逻辑的实现,而不是批量处理的复杂性。 Sprin…...

SQL-慢查询的定位及优化

定位慢查询sql 启用慢查询日志: 确保MySQL实例已经启用了慢查询日志功能。可以通过以下命令查看是否启用: SHOW VARIABLES LIKE slow_query_log;如果未启用,可以通过以下命令启用: SET GLOBAL slow_query_log ON;配置慢查询日志&…...

练习题(2024/5/11)

1逆波兰表达式求值 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 、-、* 和 / 。每个操作数(运算对象)都可以是一个整数或…...

linux系统服务器中常见故障及排查方法

目录 故障1:系统无响应 故障2:网络连接问题 故障3:文件系统错误 故障4:软件包依赖问题 故障5:用户权限问题 故障6:服务无法正常工作 故障7:磁盘空间不足 故障8:内存不足 故障…...

产品人生(5):从“敏捷开发”到“四化时间管理法”

人生如产品,产品映人生,借鉴产品思维,快速提升软技能! 在互联网的敏捷开发实践中,经常会用到“流程化、模板化、清单化、不断优化”的思想来提升开发的效率和产品质量,并确保团队能够快速响应市场变化。大…...

超级好看的html网站维护源码

源码介绍 好看的html网站维护源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面, 源码截图 源码下载 好看的html网站维护源码...

从零开始搭建Springboot项目脚手架2:配置文件、返回值、日志等

1、多个环境与配置文件 2、统一返回值 返回值包括两种场景:正常controller的返回、异常发生之后返回 正常controller的返回:通过在controller的默认返回Response实现 异常发生之后返回:通过全局异常处理统一捕获返回 首先创建类StatusCode…...

Java web第五次作业

1.在idea中配置好数据源 2、视频案例中只给出了查询所有结果的示例,请自己完成添加、删除、修改操作的代码。以下供参 考。 Delete("delete from emp where id#{id}") public void delete(Integer id); 测试代码 Test public void testDelete(){ empMa…...

Unity使用ToggleGroup对多个Toggle进行管理时,初始化默认选项失效的问题

问题描述: 在unity脚本的OnEnable中用代码设置Toggle集合中的其中一个对象的ison时,发现并没有根据设置发生变化。但是该Toggle的OnValueChange却发生过变化。 如果使用协程等待0.01s,那么对应组件的ison的修改才能生效,但是逐帧分析的话会发…...

Retrofit同步请求直接返回目标对象

Rxjava方式: // 创建 Retrofit 实例 Retrofit retrofit new Retrofit.Builder().baseUrl("https://api.example.com/").addConverterFactory(GsonConverterFactory.create()).addCallAdapterFactory(RxJava2CallAdapterFactory.create()).build();// 创…...

Android GPU渲染屏幕绘制显示基础概念(1)

Android GPU渲染屏幕绘制显示基础概念(1) Android中的图像生产者OpenGL,Skia,Vulkan将绘制的数据存放在图像缓冲区中,Android中的图像消费SurfaceFlinger从图像缓冲区将数据取出,进行加工及合成。 Surface…...

Mac电脑设置hosts的方法

hosts文件是什么 hosts文件是一个系统文件,通过绑定域名与ip的关系,当本机访问该域名时 从这个文件中如果找到了对应域名,则转发到对应ip;如果没有找到对应域名,则走默认的DNS公网解析。 好处: 加速访问…...

数据分析——大数据伦理风险分析

大数据伦理风险分析 前言一、大数据伦理二、大数据技术伦理风险算法安全性、可信赖性及稳定性风险及其应对算法风险的表现算法风险的危害算法风险的应对 算法的可解释性风险及其应对算法可解释性风险的内容算法可解释性风险的损害算法可解释性风险的应对 算法的决策不可预见性风…...

漫谈AI时代的手机

以chatGPT 为代表的大语言的横空出世使人们感受到AI 时代的到来,大语言模型技术的最大特点是机器开始”懂人话“,”说人话“了。如同任何一个革命性工具的出现一样,它必将改变人类生活和工作。 在这里。我谈谈AI时代的手机。 语音通信的历史…...

fatal error: ros/ros.h: 没有那个文件或目录

解决方法: 在出错的文件的包下的CMakeLists.txt文件里,加上 find_package(catkin REQUIRED COMPONENTSroscpp )include_directories(include ${catkin_INCLUDE_DIRS} )【ROS-解决问题】 fatal error: ros/ros.h: 没有那个文件或目录-CSDN博客...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

安卓基础(aar)

重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

免费数学几何作图web平台

光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...