当前位置: 首页 > news >正文

如何使用DEEPL免费翻译PDF

如何使用DEEPL免费翻译PDF

    • 安装DEEPL
    • 取消PDF限制

安装DEEPL

安装教程比较多,这里不重复。
把英文pdf拖进去,点翻译,在下面的框中有已经翻译完毕的文档。

在这里插入图片描述
但是存在两个问题
问题1:这些文档是加密的。
问题2:带有DeepL标识。
在这里插入图片描述

取消PDF限制

打开pdf不丁丁,pdfpatcher,
https://www. cnblogs.
com/ pdfpatcher
打开上面的pdf后,不做额外的操作,只需要保存,可以转成可以编辑的pdf。

相关文章:

如何使用DEEPL免费翻译PDF

如何使用DEEPL免费翻译PDF 安装DEEPL取消PDF限制 安装DEEPL 安装教程比较多,这里不重复。 把英文pdf拖进去,点翻译,在下面的框中有已经翻译完毕的文档。 但是存在两个问题 问题1:这些文档是加密的。 问题2:带有DeepL标…...

Spring-全面详解

Spring,就像是软件开发界的一个超级英雄,它让编写Java程序变得更简单、更灵活。想象一下,如果你要盖一栋大楼,Spring就是那个提供各种工具、框架和最佳实践的建筑大师,帮助你高效、优雅地搭建起整个项目。 Spring是啥&…...

QT自适应界面 处理高DPI 缩放比界面乱问题

1.pro文件添加 必须添加要不找不到 QT版本需要 5。4 以上才支持 QT widgets 2.main界面提前处理 // 1. 全局缩放使能QApplication::setAttribute(Qt::AA_EnableHighDpiScaling, true);// 2. 适配非整数倍缩放QGuiApplication::setHighDpiScaleFactorRoundingPolicy(Qt::High…...

序列到序列模型在语言识别Speech Applications中的应用 Transformer应用于TTS Transformer应用于ASR 端到端RNN

序列到序列模型在语言识别Speech Applications中的应用 A Comparative Study on Transformer vs RNN in Speech Applications 序列到序列(Seq2Seq)模型在语音识别(Speech Applications)中有重要的应用。虽然Seq2Seq模型最初是为了解决自然语言处理中的序列生成问题而设计的…...

【Linux】- Linux环境变量[8]

目录 环境变量 $符号 自行设置环境变量 环境变量 环境变量是操作系统(Windows、Linux、Mac)在运行的时候,记录的一些关键性信息,用以辅助系统运行。在Linux系统中执行:env命令即可查看当前系统中记录的环境变量。 …...

前端笔记-day04

文章目录 01-后代选择器02-子代选择器03-并集选择器04-交集选择器05-伪类选择器06-拓展-超链接伪类07-CSS特性-继承性08-CSS特性-层叠性09-CSS特性-优先级11-Emmet写法12-背景图13-背景图平铺方式14-背景图位置15-背景图缩放16-背景图固定17-background属性18-显示模式19-显示模…...

计算机字符集产生的历史与乱码

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益: 了解大厂经验拥有和大厂相匹配的技术等 希望看什么,评论或者私信告诉我! 文章目录 一…...

Rerank进一步提升RAG效果

RAG & Rerank 目前大模型应用中,RAG(Retrieval Augmented Generation,检索增强生成)是一种在对话(QA)场景下最主要的应用形式,它主要解决大模型的知识存储和更新问题。 简述RAG without R…...

使用train.py----yolov7

准备工作 在训练之前,数据集的工作和配置环境的工作要做好 数据集:看这里划分数据集,训练自己的数据集。_划分数据集后如何训练-CSDN博客 划分数据集2,详细说明-CSDN博客 配置环境看这里 从0开始配置环境-yolov7_gpu0是inter g…...

机器学习第37周周报 GGNN

文章目录 week37 GGNN摘要Abstract一、文献阅读1. 题目2. abstract3. 网络架构3.1 数据处理部分3.2 门控图神经网络3.3 掩码操作 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.3.1 传感器设置策略4.3.2 数据集4.3.3 实验设置4.3.4 模型参数设置4.3.5 实验结果 5. 结论 …...

Baidu Comate:释放编码潜能,革新软件开发

Baidu Comate Baidu Comate,智能代码助手,凭借着文心大模型的强大支撑,结合了百度多年的编程实战数据和丰富的开源资源,形成了一款崭新的编码辅助利器。它不仅具备着高智能、多场景、价值创造的特质,更可广泛应用于各…...

MATLAB的Bar3函数调节渐变色(内附渐变色库.mat及.m文件免费下载链接)

一. colormap函数 可以使用colormap函数: t1[281.1,584.6, 884.3,1182.9,1485.2; 291.6,592.6,896,1197.75,1497.33; 293.8,596.4,898.6,1204.4,1506.4; 295.8,598,904.4,1209.0,1514.6];bar3(t1,1) set(gca,XTickLabel,{300,600,900,1200,1500},FontSize,10) set…...

使用 TensorFlow.js 和 OffscreenCanvas 实现实时防挡脸弹幕

首先,要理解我们的目标,我们将实时获取视频中的面部区域并将其周围的内容转为不透明以制造出弹幕的“遮挡效应”。 步骤一:环境准备 我们将使用 TensorFlow.js 的 Body-segmentation 库来完成面部识别部分,并使用 OffscreenCanv…...

【计算机网络篇】数据链路层(10)在物理层扩展以太网

文章目录 🍔扩展站点与集线器之间的距离🛸扩展共享式以太网的覆盖范围和站点数量 🍔扩展站点与集线器之间的距离 🛸扩展共享式以太网的覆盖范围和站点数量 以太网集线器一般具有8~32个接口,如果要连接的站点数量超过了…...

conan2 基础入门(03)-使用(msvc为例)

conan2 基础入门(03)-使用(msvc为例) 文章目录 conan2 基础入门(03)-使用(msvc为例)⭐准备生成profile文件预备文件和Code ⭐使用指令预览正确执行结果可能出现的问题 ⭐具体讲解conanconanfile.txt执行 install cmakeCMakeLists.txt生成项目构建 END ⭐准备 在阅读和学习本文…...

uniapp this 作用域保持的方法

在 UniApp(或任何基于 Vue.js 的框架)中,this 关键字通常用于引用当前 Vue 实例的上下文。然而,当你在回调函数、定时器、Promise、异步函数等中使用 this 时,你可能会发现 this 的值不再指向你期望的 Vue 实例&#x…...

vue2 与vue3的差异汇总

Vue 2 与 Vue 3 之间存在多方面的差异,这些差异主要体现在性能、API设计、数据绑定、组件结构、以及生命周期等方面。以下是一些关键差异的汇总: 数据绑定与响应式系统 Vue 2 使用 Object.defineProperty 来实现数据的响应式,这意味着只有预…...

Java反射(含静态代理模式、动态代理模式、类加载器以及JavaBean相关内容)

目录 1、什么是反射 2、Class类 3、通过Class类取得类信息/调用属性或方法 4、静态代理和动态代理 5.类加载器原理分析 6、JavaBean 1、什么是反射 Java反射机制的核心是在程序运行时动态加载类并获取类的详细信息,从而操作类或对象的属性和方法。本质是JVM得…...

Scoop国内安装、国内源配置

安装配置源可参考gitee上的大佬仓库,里面的步骤、代码都很详细,实测速度也很好 glsnames/scoop-installer 也可以结合其它bucket使用 使用Github加速网站,也可以换做其他代理方式,自行测试 例如:https://mirror.ghprox…...

【软件开发规范篇】JAVA后端开发编程规范

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

网站指纹识别

网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...