异常检测的学习和实战
1.应用:
1.在工业上的应用
当检测设备是否处于异常工作状态时,可以由上图分析得到:那些零散的点对应的数据是异常数据。因为设备大多数时候都是处于正常工作状态的,所以数据点应该比较密集地集中在一个范围内,而那些明显偏出正常范围内的数据点就是我们要找的异常数据了,此时就可以自动
2.在图像里的应用
通过异常检测,我们也可以检测到图像中的异常图像。(如上图中的小红鱼)
此外,异常检测的应用还有很多,比如:
异常消费检测(商业)
缺陷基因检测(医疗)
劣质产品检测(工业)等等
2.对于异常检测的定义:
根据输入的数据,对不符合预期模式的数据进行识别
3.介绍:
假设我们有一个一维的数据集,在这个数据集中有m个样本:
数据在x轴的分别如下图:
我们的目标是自动地找出这上面的异常样本,就可以根据样本在坐标轴上分布的数量多少,计算出坐标轴上各点对应的样本的概率密度,可以设定当概率密度小于某个值时,这时其对应的样本就是我们要找的异常样本。——>根据各个样本对应的概率函数计算出来的值画出数据分布,进而判断是否属于异常样本
这里说一下高斯分布的概率密度函数:
根据以上数据我们就可以计算出我们的均值和方差:
然后我们将均差和方差带入公式就能算出我们的P(x)了:
4.如何根据高斯分布概率去解决异常检测的问题呢?
**(第一步)**在我们知道X1、X2……Xm这些数据后,就可以进行相应计算了。
- 计算各个数据均值u,标准差σ
- 计算对应的高斯分布概率密度函数P(x)
(第二步)计算出来后,数据对应的高斯分布概率密度函数如下图
该点就为异常点
问:如果数据高于一维怎么办?
比如这里n维的数据,每一个维度都有m个样本。若要计算其高斯分布概率密度函数,可按如下步骤:
先计算出每一个维度下对应的均值和标准差了,这样就可以计算每个维度下的概率密度函数
我们将计算出的每个维度下的概率密度函数相乘就可以计算出总的概率密度函数了
最后再根据高维下的概率密度函数判断其是否小于预期就可以判断异常点了
5.举个例子:
举个例子,下面给出一组二维数据,来判断当x1=3.5,x2=3.5时,对应的点是不是异常点
知道了标准差和均值,就可以计算其概率密度函数了
经计算可判断该点为异常点
很多时候,为了更直观的观察概率密度函数,我们是可以把它画出来的,下图是二维数据下的一个概率密度函数图
6.实战代码:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib as mlp # mlp设置字体
from scipy.stats import norm # norm计算高斯分布概率函数
from sklearn.covariance import EllipticEnvelope # EllipticEnvelope模型专门做异常检测的# 1.预览数据
data = pd.read_csv('D:/pythonDATA/anomaly_data.csv')
print(data.head())
# 2.进行数据分布可视化
fig1 = plt.figure(figsize=(10, 7))
x1 = data.loc[:, 'x1']
x2 = data.loc[:, 'x2']font2 = {'family': 'SimHei', 'weight': 'normal', 'size': '20'} # 定义一下字体(根据自己喜好定义即可)
mlp.rcParams['font.family'] = 'SimHei' # 设置字体
mlp.rcParams['axes.unicode_minus'] = False # 字符显示fig2 = plt.figure(figsize=(20, 7))plt.subplot(121) # 子图一行二列所属第一列(画x1)
plt.hist(x1, bins=100) # 分成100个数据分隔,即有100条条状图
plt.title('x1 数据分布统计', font2)
plt.xlabel('x1', font2)
plt.ylabel('出现次数', font2)plt.subplot(122) # 子图一行二列所属第二列(画x2)
plt.hist(x2, bins=100) # 分成100个数据分隔
plt.title('x2 数据分布统计', font2)
plt.xlabel('x2', font2)
plt.ylabel('出现次数', font2)
plt.show()# 3.计算x1、x2的均值(mean)和标准差(sigma)
print("计算x1,x2的mean均值和标准差sigma")
x1_mean = x1.mean()
x1_sigma = x1.std()
x2_mean = x2.mean()
x2_sigma = x2.std()
print(x1_mean, x1_sigma, x2_mean, x2_sigma)# 4.计算高斯分布概率密度函数
x1_range = np.linspace(0, 20, 300) # x1值得范围是0到20,300个点均分
x1_normal = norm.pdf(x1_range, x1_mean, x1_sigma) # 计算高斯分布概率密度函数x_normal
x2_range = np.linspace(0, 20, 300)
x2_normal = norm.pdf(x2_range, x2_mean, x2_sigma)# 5.可视化高斯分布概率密度函数
fig3 = plt.figure(figsize=(20, 7))
plt.subplot(121)
plt.plot(x1_range, x1_normal) # 可视化分布概率函数(x1的值切分做x,高斯分布概率函数作y)
plt.title('normal p(x1)')
plt.subplot(122)
plt.plot(x2_range, x2_normal) # 可视化分布概率函数(x2的值切分作为x轴,y轴为高斯分布概率函数)
plt.title('normal p(x2)')
plt.show()
# 6.建立模型
ad_model = EllipticEnvelope(contamination=0.03) # 默认阈值是0.1,我们修改为0.03观察变化
ad_model.fit(data)
# 7.预测
y_predict = ad_model.predict(data)
print(pd.value_counts(y_predict))
y_predict = np.array(y_predict)# 可视化结果
fig4 = plt.figure(figsize=(10, 6))
orginal_data = plt.scatter(data.loc[:, 'x1'], data.loc[:, 'x2'], marker='x') # 将各点用'x'表示
anomaly_data = plt.scatter(data.loc[:, 'x1'][y_predict == -1], data.loc[:, 'x2'][y_predict == -1], marker='o',facecolor='none', edgecolor='red', s=150)
# y_predict==-1即是异常点; marker='o'将异常点用圆圈圈起来; facecolor='none' 不填充,即空心圆; edgecolor='red' 颜色为红色; s=150 圆圈的大小.
plt.title('自动寻找异常数据', font2)
plt.xlabel('x1', font2)
plt.ylabel('x2', font2)
plt.legend((orginal_data, anomaly_data), ('原数据', '检测异常点'))
plt.show()
数据分布图:
高斯概率分布图:
异常数据分布图:
相关文章:

异常检测的学习和实战
1.应用: 1.在工业上的应用 当检测设备是否处于异常工作状态时,可以由上图分析得到:那些零散的点对应的数据是异常数据。因为设备大多数时候都是处于正常工作状态的,所以数据点应该比较密集地集中在一个范围内,而那些明…...
RabbitMQ 面试题(一)
1. 简述为什么要使用 RabbitMQ ? 使用 RabbitMQ 的主要原因包括以下几点: 解耦:在复杂的系统中,不同的服务或组件之间往往需要通信和协作。RabbitMQ 作为消息队列,允许这些组件或服务通过发送和接收消息来交互,而无…...

org.postgresql.util.PSQLException: 错误: 关系 “dual“ 不存在
springboot 项目连接 postgreps,启动时报错 org.postgresql.util.PSQLException: 错误: 关系 "dual" 不存在。 查阅资料后发现这是由配置文件中的配置 datasource-dynamic-druid-validationQuery 导致的 spring:datasource:druid:stat-view-servlet:ena…...
mysql权限分类
USAGE --无权限,只有登录数据库,只可以使用test或test_*数据库 ALL --所有权限 select/update/delete/super/slave/reload --指定的权限 with grant option --允许把自己的权限授予其它用户(此用户拥有建立账号的权限) 权限级别: 1、. --全…...

【C++11】列表初始化、右值引用的详细讲解(上)
前言 在一开始学C之前我们就简单的了解了一下C的发展历史。 相比较而言,C11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率加了许多特性,约140个新特性。使得C…...

【JAVA进阶篇教学】第十三篇:Java中volatile关键字讲解
博主打算从0-1讲解下java进阶篇教学,今天教学第十三篇:volatile关键字讲解。 在 Java 中,volatile关键字是一种轻量级的同步机制,用于确保变量的可见性和禁止指令重排序。本文将详细解释volatile关键字的工作原理、可见性保证以及…...

蓝桥杯-地宫取宝
X 国王有一个地宫宝库,是 nm 个格子的矩阵,每个格子放一件宝贝,每个宝贝贴着价值标签。 地宫的入口在左上角,出口在右下角。 小明被带到地宫的入口,国王要求他只能向右或向下行走。 走过某个格子时,如果那个…...

带头单链表 C++实现
节点定义 带头单链表:我们只需要一个结点指针指向整个链表的第一个节点,这样我们就可以通过next指针访问整个链表内的所有节点 template<class T> struct ListNode {T _val;ListNode* _next;ListNode(const T &val):_val(val),_next(nullptr){…...
学习c#第24天 枚举类型
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace enumType { //定义枚举 public enum Week { 星期一, 星期二, 星期三, 星期四, 星期…...
TensorFlow运行bug汇总
1、ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1 解决方案 pip install urllib31.26.15 -i https://pypi.tuna.tsinghua.edu.cn/simple 升级或者降级 (TF2.1) C:\Users\Administrator>pip install urllib31.26.15 -i https://pypi.tuna.tsinghua.edu.cn/sim…...
docker部署调度程序
Dockerfile(构建初始镜像) # python:3.8-slim-buster为精简版的python FROM python:3.8-slim-buster # 1059为组的id,newgroup为组名,1088为用户的id,newuser为新用户 RUN groupadd -g 1059 newgroup && \useradd -g -u 1088 -g newgroup -m newuser USER newuser RUN…...
websocket和http协议的区别
ws(websocket)协议和http协议是两种不同的协议。 http:http是一种用于传输超文本的应用层协议,通常用于web端浏览器和web端服务器之间传输数据。http也是基于tcp的,但是HTTP只能在同一时刻单向发送消息,是一种半双工通信。&#…...

CSS之定位
目录 CSS定位为什么需要定位定位组成定位的叠放顺序拓展 CSS定位 为什么需要定位 浮动可以让多个块级盒子一行没有缝隙排列显示,经常用于横向排列盒子定位则是可以让盒子自由的在某个盒子内移动位置或者固定屏幕中的某个位置,并且可以压住其他盒子 定…...
[IM002][Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序
解决办法: 安装驱动 下载 ODBC Driver for SQL Server - ODBC Driver for SQL Server | Microsoft Learn...

神经网络复习--神经网络算法模型及BP算法
文章目录 神经网络模型的构成BP神经网络 神经网络模型的构成 三种表示方式: 神经网络的三要素: 具有突触或连接,用权重表示神经元的连接强度具有时空整合功能的输入信号累加器激励函数用于限制神经网络的输出 感知神经网络 BP神经网络 …...

【Java】/*方法的使用-快速总结*/
目录 一、什么是方法 二、方法的定义 三、实参和形参的关系 四、方法重载 五、方法签名 一、什么是方法 Java中的方法可以理解为C语言中的函数,只是换了个名称而已。 二、方法的定义 1. 语法格式: public static 返回类型 方法名 (形参列表) { //方…...
kotlin中协程相关
协程 用同步的方式写出异步的效果协程最重要的是通过非阻塞挂起和恢复实现了异步代码的同步编写方式挂起函数(suspend)不一定就是在子线程中执行的,但是通常在定义挂起函数时都会为它指定其他线程,这样挂起才有意义解决多层嵌套回调 协程不是线程&…...

(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目
(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目PbootCMS内核开发的网站模板,该模板适用于物流运输网站、仓储货运网站等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可;自适应手机端,同一个后台…...

Navicat导出表结构到Excel或Word
文章目录 sql语句复制到excel复制到Word sql语句 SELECTcols.COLUMN_NAME AS 字段,cols.COLUMN_TYPE AS 数据类型,IF(pks.CONSTRAINT_TYPE PRIMARY KEY, YES, NO) AS 是否为主键,IF(idxs.INDEX_NAME IS NOT NULL, YES, NO) AS 是否为索引,cols.IS_NULLABLE AS 是否为空,cols.…...

Golang编译优化——稀疏条件常量传播
文章目录 一、概述二、稀疏条件常量传播2.1 初始化worklist2.2 构建def-use链2.3 更新值的lattice2.4 传播constant值2.5 替换no-constant值 一、概述 常量传播(constant propagation)是一种转换,对于给定的关于某个变量 x x x和一个常量 c …...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...