【C++11】列表初始化、右值引用的详细讲解(上)
前言
在一开始学C++之前我们就简单的了解了一下C++的发展历史。
- 相比较而言,C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率
- 加了许多特性,约140个新特性。使得C++更像一种新语言,比如:正则表达式、基于范围for循环、auto关键字、新容器、列表初始化、标准线程库等。
C++11官网:链接: C++文档
目录
- 1.统一的列表初始化
- 1.1 { } 花括号初始化:
- 1.2 std::initializer_list :
- 2.类型自动推导
- 2.1 Auto
- 2.2 decltype
- 3.右值引用
- 3.1 什么是左值和右值:
- 3.2 右值引用使用场景和意义:
- 3.2.1 右值引用之移动构造:
- 3.2.1 右值引用之移动赋值:
- 4.新的类功能
- 5. C++11 新的关键字
- 5.1 强制生成默认函数的关键字default
- 5.2 禁止生成默认函数的关键字delete:
1.统一的列表初始化
1.1 { } 花括号初始化:
在C++98中,标准允许使用花括号{} 对数组 或者 结构体元素 进行统一的列表初始值设定:
struct Point
{
int _x;
int _y;
};
int main()
{
% 数组
int array1[] = { 1, 2, 3, 4, 5 };
int array2[5] = { 0 };
% 结构体
Point p = { 1, 2 };
return 0;
}
C++11 扩大了用大括号括起的列表初始化 的使用范围,使其可用于所有的内置类型和用户自定义的类型,使用列表初始化时,可添加等号(=),也可不添加。
int main()
{Date d1(2022, 1, 1); // old style// C++11支持的列表初始化,这里会调用构造函数初始化Date d2{ 2022, 1, 2 };Date d3 = { 2022, 1, 3 };
}
1.2 std::initializer_list :
链接: std::initializer_list的介绍文档:
- std::initializer_list是个类模板
- std::initializer_list, 为了让容器的初始化进行统一。
我们先来看一下其类型:
- std::initializer_list支持迭代器
注意:
- std::initializer_list内容是不能被改的
> 为什么突然要加到一个容器了呢?
首先std::initializer_list是C++11新提出来的
其次有了std::initializer_list,之前学的容器也都支持了用{ }列表初始化
底层都是增加了一个支持std::initializer_list的构造函数
Vector支持initializer_list的举例:
先构造一个initializer_list,再用initializer_list构造一个vector,具体过程:
- 可以和之前隐式类型转换联系起来,
- 也是中间产生了一个临时对象(initializer_list),再用临时对象去拷贝构造。
2.类型自动推导
2.1 Auto
C++11中废弃auto原来的用法,将其用于实现自动类型推导。
auto it = dict.begin();
- 尾置类型通常要和auto结合使用。
- auto必须要进行初始化,因为是通过初始化的类型来推导的。
2.2 decltype
关键字decltype将变量的类型声明为表达式指定的类型.
decltype(x * y) ret; // ret的类型是double
decltype(&x) p;
- decltype可以不需要初始化,方便了很多。(函数,表达式)
- decltype推导表达式类型是在编译期完成的,并且不会真正计算表达式的值
3.右值引用
3.1 什么是左值和右值:
C++11中新增了的右值引用语法特性。
1. 什么是左值?
- 左值是一个表示数据的表达式,如:变量名或解引用的指针
- 左值可以取地址+ 一般情况下可以修改(const修饰的左值,不能被修改)
- 左值可以出现赋值符号的左边,也可以出现在右边
- 定义时 const修饰后的左值,不能给它赋值,但是可以取它的地址。
- 左值引用就是给左值的引用,给左值取别名
int main()
{
// 以下的p、b、c、*p都是左值int* p = new int(0);int b = 1;const int c = 2;
// 以下几个是对上面左值的左值引用int*& rp = p;int& rb = b;const int& rc = c;int& pvalue = *p;return 0;
}
2. 什么是右值?
- 右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等
- 右值不能取地址
- 右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边
- 右值引用就是对右值的引用,给右值取别名
- 使用&& 来声明。
int main()
{
double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x + y;
fmin(x, y); ---函数返回值
// 以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
double&& rr3 = fmin(x, y);
}
> C++11有对右值进行了严格的区分:
纯右值: 比如常量,表达式值a+b 内置类型右值
将亡值:比如函数传值返回,表达式的中间结果。顾名思义,将亡值的空间马上就要被释放了。
右值引用的特殊情况1-----:
- 右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址
- 例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1 (rr1就变成左值)。如果不想rr1被修改,可以用const int&& rr1 去引用。
- Const Int && 右值引用 使用场景需要注意
int main()
{
double x = 1.1, y = 2.2;
int&& rr1 = 10;
const double&& rr2 = x + y;
}
右值引用的特殊情况2 ------const左值引用:
- const引用:可以引用普通左值、const左值、右值,但不能修改const引用的值。
const int& b = a;//const引用,引用普通左值const int& c = ca;//const引用,引用const左值const int& d = 30;//const引用,引用右值
总结:
- 左值引用只能引用左值,不能引用右值
- const左值引用既可以引用 左值,又可以引用右值
- 右值引用只能右值,不能引用左值
- 但是右值引用可以move以后的左值
3.2 右值引用使用场景和意义:
左值引用的使用场景:
- 做参数
- 做返回值都可以提高效率
左值引用的短板:
- 当函数返回对象是一个局部变量,出了函数作用域就不存在了,就不能使用左值引用返回,只能传值返回。
- 例如:bit::string to_string(int value) 、Date operator++(int)
函数中可以看到,这里只能使用传值返回,传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷贝构造)
提出解决方案:
-
C++11引入了移动构造和移动赋值函数
-
根据函数匹配规则,会更匹配移动构造和移动赋值函数。
// 注意:this指向的对象函数结束后不会销毁,故以引用方式返回提高效率
Date& operator++()
{
_day += 1;
return *this;
}//下面temp是临时对象,因此只能以值的方式返回,不能返回引用
Date operator++(int) --传值返回
{
Date temp(*this);
_day += 1;
return temp;
}
3.2.1 右值引用之移动构造:
右值引用和移动语义解决上述问题:
在bit::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己
// 移动构造
string(string&& s)
:_str(nullptr)
,_size(0)
,_capacity(0)
{
cout << "string(string&& s) -- 移动语义" << endl;
swap(s);
}
int main()
{
bit::string ret2 = bit::to_string(-1234);
return 0;
}
这里没有调用深拷贝的拷贝构造,而是调用了移动构造,移动构造中没有新开空间,拷贝数据,所以效率提高了。。
编译器匹配。。
3.2.1 右值引用之移动赋值:
在bit::string类中增加移动赋值函数,再去调用bit::to_string(1234),不过这次是将 bit::to_string(1234)返回的右值对象赋值给ret1对象,这时调用的是移动构造。
// 移动赋值
string& operator=(string&& s)
{
cout << "string& operator=(string&& s) -- 移动语义" << endl;
swap(s);
return *this;
}
int main()
{
bit::string ret1;
ret1 = bit::to_string(1234);
return 0;
}
4.新的类功能
默认成员函数:
原来C++类中,有6个默认成员函数:
- 构造函数
- 析构函数
- 拷贝构造函数
- 拷贝赋值重载
- 取地址重载
- const 取地址重载
C++11 新增了两个默认成员函数:
- 移动构造函数
- 移动赋值
移动构造和移动赋值是有条件的,并且默认生成的达到不了我们想要的效果,
所以一般我们自己实现
- 如果你没有自己实现移动构造函数,且没有实现析构函数
、拷贝构造、拷贝赋值重载中的任意一个。那么编译器会自动生成一个默认移动构造。默认生成的移动构造函数,对于内置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造,如果实现了就调用移动构造,没有实现就调用拷贝构造。 - 如果你没有自己实现移动赋值重载函数,且没有实现析构函数
、拷贝构造、拷贝赋值重载中的任意一个,那么编译器会自动生成一个默认移动赋值。默认生成的移动构造函数,对于内置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动赋值,如果实现了就调用移动赋值,没有实现就调用拷贝赋值。(默认移动赋值跟上面移动构造完全类似) - 如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值。
STL容器中的各种插入也用到了右值引用:==
当这些容器的元素是某个对象的时候,插入的话要new一个新的元素,也会产生深拷贝的问题,所以这里用到右值引用将会非常方便
5. C++11 新的关键字
5.1 强制生成默认函数的关键字default
C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原因这个函数没有默认生成。
比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以
使用default关键字显示指定移动构造生成
class Person
{
public:
Person(const char* name = "", int age = 0)
:_name(name)
, _age(age)
{}
Person(const Person& p)
:_name(p._name)
,_age(p._age)
{}
Person(Person&& p) = default;
private:
bit::string _name;
int _age;
};
5.2 禁止生成默认函数的关键字delete:
如果能想要限制某些默认函数的生成,在C++98中,是该函数设置成private,并且只声明补丁已,这样只要其他人想要调用就会报错。
在C++11中更简单,只需在该函数声明加上=delete即可,该语法指示编译器不生成对应函数的默认版本,称=delete修饰的函数为删除函数。
class Person
{
public:
Person(const char* name = "", int age = 0)
:_name(name)
, _age(age)
{}
Person(const Person& p) = delete;
private:
bit::string _name;
int _age;
};
尾声
看到这里,相信大家对这个C++有了解了。
如果你感觉这篇博客对你有帮助,不要忘了一键三连哦
相关文章:

【C++11】列表初始化、右值引用的详细讲解(上)
前言 在一开始学C之前我们就简单的了解了一下C的发展历史。 相比较而言,C11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更强大,而且能提升程序员的开发效率加了许多特性,约140个新特性。使得C…...

【JAVA进阶篇教学】第十三篇:Java中volatile关键字讲解
博主打算从0-1讲解下java进阶篇教学,今天教学第十三篇:volatile关键字讲解。 在 Java 中,volatile关键字是一种轻量级的同步机制,用于确保变量的可见性和禁止指令重排序。本文将详细解释volatile关键字的工作原理、可见性保证以及…...

蓝桥杯-地宫取宝
X 国王有一个地宫宝库,是 nm 个格子的矩阵,每个格子放一件宝贝,每个宝贝贴着价值标签。 地宫的入口在左上角,出口在右下角。 小明被带到地宫的入口,国王要求他只能向右或向下行走。 走过某个格子时,如果那个…...

带头单链表 C++实现
节点定义 带头单链表:我们只需要一个结点指针指向整个链表的第一个节点,这样我们就可以通过next指针访问整个链表内的所有节点 template<class T> struct ListNode {T _val;ListNode* _next;ListNode(const T &val):_val(val),_next(nullptr){…...
学习c#第24天 枚举类型
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace enumType { //定义枚举 public enum Week { 星期一, 星期二, 星期三, 星期四, 星期…...
TensorFlow运行bug汇总
1、ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1 解决方案 pip install urllib31.26.15 -i https://pypi.tuna.tsinghua.edu.cn/simple 升级或者降级 (TF2.1) C:\Users\Administrator>pip install urllib31.26.15 -i https://pypi.tuna.tsinghua.edu.cn/sim…...
docker部署调度程序
Dockerfile(构建初始镜像) # python:3.8-slim-buster为精简版的python FROM python:3.8-slim-buster # 1059为组的id,newgroup为组名,1088为用户的id,newuser为新用户 RUN groupadd -g 1059 newgroup && \useradd -g -u 1088 -g newgroup -m newuser USER newuser RUN…...
websocket和http协议的区别
ws(websocket)协议和http协议是两种不同的协议。 http:http是一种用于传输超文本的应用层协议,通常用于web端浏览器和web端服务器之间传输数据。http也是基于tcp的,但是HTTP只能在同一时刻单向发送消息,是一种半双工通信。&#…...

CSS之定位
目录 CSS定位为什么需要定位定位组成定位的叠放顺序拓展 CSS定位 为什么需要定位 浮动可以让多个块级盒子一行没有缝隙排列显示,经常用于横向排列盒子定位则是可以让盒子自由的在某个盒子内移动位置或者固定屏幕中的某个位置,并且可以压住其他盒子 定…...
[IM002][Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序
解决办法: 安装驱动 下载 ODBC Driver for SQL Server - ODBC Driver for SQL Server | Microsoft Learn...

神经网络复习--神经网络算法模型及BP算法
文章目录 神经网络模型的构成BP神经网络 神经网络模型的构成 三种表示方式: 神经网络的三要素: 具有突触或连接,用权重表示神经元的连接强度具有时空整合功能的输入信号累加器激励函数用于限制神经网络的输出 感知神经网络 BP神经网络 …...

【Java】/*方法的使用-快速总结*/
目录 一、什么是方法 二、方法的定义 三、实参和形参的关系 四、方法重载 五、方法签名 一、什么是方法 Java中的方法可以理解为C语言中的函数,只是换了个名称而已。 二、方法的定义 1. 语法格式: public static 返回类型 方法名 (形参列表) { //方…...
kotlin中协程相关
协程 用同步的方式写出异步的效果协程最重要的是通过非阻塞挂起和恢复实现了异步代码的同步编写方式挂起函数(suspend)不一定就是在子线程中执行的,但是通常在定义挂起函数时都会为它指定其他线程,这样挂起才有意义解决多层嵌套回调 协程不是线程&…...

(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目
(自适应手机端)物流运输快递仓储网站模板 - 带三级栏目PbootCMS内核开发的网站模板,该模板适用于物流运输网站、仓储货运网站等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可;自适应手机端,同一个后台…...

Navicat导出表结构到Excel或Word
文章目录 sql语句复制到excel复制到Word sql语句 SELECTcols.COLUMN_NAME AS 字段,cols.COLUMN_TYPE AS 数据类型,IF(pks.CONSTRAINT_TYPE PRIMARY KEY, YES, NO) AS 是否为主键,IF(idxs.INDEX_NAME IS NOT NULL, YES, NO) AS 是否为索引,cols.IS_NULLABLE AS 是否为空,cols.…...

Golang编译优化——稀疏条件常量传播
文章目录 一、概述二、稀疏条件常量传播2.1 初始化worklist2.2 构建def-use链2.3 更新值的lattice2.4 传播constant值2.5 替换no-constant值 一、概述 常量传播(constant propagation)是一种转换,对于给定的关于某个变量 x x x和一个常量 c …...
人工智能培训讲师咨询叶梓介绍及智能医疗技术与ChatGPT临床应用三日深度培训提纲
1、授课老师简介 叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的…...

HCIP(BGP综合实验)--8
一:实验要求 二:实现过程 (一)配置IP地址: AR1: [AR1]int g0/0/0 [AR1-GigabitEthernet0/0/0]ip add 12.1.1.1 24 [AR1-GigabitEthernet0/0/0]int l0 [AR1-LoopBack0]ip add 172.16.0.1 32 [AR1-LoopBack0]int l1 […...

深入理解C++中的Vector容器:用容器构建高效程序
文章目录 vector介绍vector常用的成员函数有关vector定义的函数vector的迭代器使用vector关于空间操作的成员函数vector的增删查改 总结 vector介绍 在C语言的库中包含有公共数据结构的实现,C的这个部分内容就是众所周知的STL(标准模版库)&a…...
目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(下)
目录 3.2 基于空洞卷积的特征融合模块设计 3.3 改进k-means聚类算法的anchor尺寸优化设计...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

OPENCV图形计算面积、弧长API讲解(1)
一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积,这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能,常用的API…...

设计模式域——软件设计模式全集
摘要 软件设计模式是软件工程领域中经过验证的、可复用的解决方案,旨在解决常见的软件设计问题。它们是软件开发经验的总结,能够帮助开发人员在设计阶段快速找到合适的解决方案,提高代码的可维护性、可扩展性和可复用性。设计模式主要分为三…...