04 贝尔曼最优公式
贝尔曼最优公式
- 前言
- 1、Motivating examples
- 2、Definition of optimal policy
- 3、Bellman optimality equation(BOE):Introduction
- 4、 BOE:Maximization on the right-hand side
- 5、BOE:Rewrite as v = f(v)
- 6、Contraction mapping theorem
- 7、BOE:Solution
- 8、BOE:Optimality
- 9、Analyzing optimal policies
前言
本文来自西湖大学赵世钰老师的B站视频。
本节课介绍最优策略和贝尔曼最优公式。贝尔曼最优公式是贝尔曼公式的一个特殊情况,本次学习有两个重要概念和一个工具。
(1) 两个概念:optimal state value 和optimal policy.
(2) 一个工具:bellman optimality equation(BOE).
强化学习的目标就是寻找最优策略,因此本文主要讲最优策略。本文大纲如下:

1、Motivating examples

这是上节课介绍的贝尔曼方程,有了贝尔曼方程,我们就可以求解state value,有了state value,我们就可以进一步求解action value。下图是求解action value的流程,以状态s1出发为例:

以上是对前几次课的复习,由此我们可以提出一个问题,就是当前这个策略如果是不好的,我们应该怎么去提升它?这个就依赖于action value。当前的策略可以写成以下形式:


由上可知,我们已经知道a3是最好的,如果选择a3是这个新的策略,我们就获得了new policy。新的策略就是对应action value 最大。
我们首先对每一个状态都选择action value最大的 action,选择完了一次,然后再来一次迭代得到了一个新的策略,就这样不断迭代,最后那个策略就会趋向于一个最优的策略。
2、Definition of optimal policy

3、Bellman optimality equation(BOE):Introduction

贝尔曼最优公式就是在贝尔曼公式的前面加一个max,这个max就涉及到一个优化问题,就是要先解决优化问题,求解出一个策略π,带入到贝尔曼公式中。

上面是矩阵形式。

4、 BOE:Maximization on the right-hand side
下面是BOE的两种表示形式,实际上我们是得到一个式子,但有两个未知量,如何求解呢?

下面是一个小例子:

这个小例子的求解思路就可以放到贝尔曼最优公式求解中。

我们先给定公式右边的v(s’)一个初值,这样q(s,a)就是确定的了,此时我们需要把π(a|s)确定下来。我们知道对于网格问题有5个action,则有5个q(s,a),我们怎样求解π(a|s)?再看一个例子,假设有3个q值:


至此,我们解决了π(a|s)如何求解的问题。
5、BOE:Rewrite as v = f(v)
本文第4小节,我们知道了如何选择π(a|s),此时贝尔曼最优公式的求解问题就变的比较简单了,我们就可以给等式右边一个初值,用矩阵迭代求解了。

6、Contraction mapping theorem
下面介绍一些概念:



以上实际上是迭代法求解矩阵收敛性的公式证明。

7、BOE:Solution

8、BOE:Optimality



9、Analyzing optimal policies
利用贝尔曼最优公式我们求解最优的策略,求解最优的state value。下面我们就用这个工具分析一些最优的策略。

已知红色的量,把黑色的量求解出来。


γ比较大的时候,策略会考虑的更长远。相反,γ如果等于0,策略会更加短视。

当我们把forbidden arera的惩罚值设置的比较大时,策略会选择绕过forbidden area。

策略选择的重点不在于奖励值设置的绝对大小,而在于相对大小。

下面再看一个例子:

很多人可能会觉得,我每走一步,应该给一个惩罚,即r=-1,实际当中这个r=-1就代表一种能量的消耗,这样的话智能体就不会绕远路,它就会尽可能地走最短的路径到目标区域,如果没有r=-1的话,好像就会绕远路,是这个样子吗?通过上图示例我们可以发现并不是这样子的,因为除了r来约束它不要绕远路之外,还有γ,因为它越绕远路就意味着我得到到达目标的奖励越晚,那么对应γ的次方就会越大,那么打折就会越厉害,所以它自然就会找一个最短的路径过去。
最后总结如下:

相关文章:
04 贝尔曼最优公式
贝尔曼最优公式 前言1、Motivating examples2、Definition of optimal policy3、Bellman optimality equation(BOE):Introduction4、 BOE:Maximization on the right-hand side5、BOE:Rewrite as v f(v)6、Contraction mapping theorem7、BO…...
印象笔记使用技巧
印象笔记(Evernote)是一款广泛使用的笔记应用,它帮助用户整理个人信息、文件和备忘录。以下是一些提高在印象笔记中效率的使用技巧: ### 1. 使用标签和笔记本组织笔记 - **建立笔记本**:为不同的项目或类别创建笔记本…...
产品设计中的“注册”说明
在使用网站或应用的时候必不可少的就是账号系统,账号系统有些人可能觉得简单,无非就是账号密码。真的是这样吗? 一个完整的账号系统通常大家会分成四部分: 1.注册(手机号、邮箱、用户名/密码限制/验证码)…...
【linux学习】多线程(1)
文章目录 线程的概念线程与进程 线程的用法线程的创建多线程 线程的等待线程锁死锁 线程的概念 在Linux中,线程(Thread)是程序执行流的最小单位,是进程中的一个实体,负责在程序中执行代码。线程本身不拥有系统资源&…...
Leetcode 3149. Find the Minimum Cost Array Permutation
Leetcode 3149. Find the Minimum Cost Array Permutation 1. 解题思路2. 代码实现 题目链接:3149. Find the Minimum Cost Array Permutation 1. 解题思路 这一题的话就是一个动态规划的问题,不过他这个错位着实是把题目变得复杂了不少,唉…...
Python | 为列表中的元素分配唯一值
我们可以给列表中的所有数字分配一个唯一的值,重复时它会保留给它的值。这是一个非常常见的问题,在Web开发中,处理物品id时会遇到。让我们讨论一下解决这个问题的一些方法。 1. 使用enumerate() 列表解析 # initializing list test_list …...
HTML炫酷的相册
目录 写在前面 HTML简介 完整代码 代码分析 系列推荐 写在最后 写在前面 本期小编给大家带来一个炫酷的旋转相册,快来解锁属于你的独家记忆吧! HTML简介 HTML(全称为超文本标记语言)是一种用于创建网页结构和内容的标记语…...
C++笔试强训day20
目录 1.经此一役小红所向无敌 2.连续子数组最大和 3.非对称之美 1.经此一役小红所向无敌 链接 简单模拟即可。 需要注意的是: 除完之后有无余数,若有,则还可以再挨一次打。 #include <iostream> using namespace std; #define in…...
【PHP【实战项目】系统性教学】——使用最精简的代码完成用户的登录与退出
👨💻个人主页:开发者-曼亿点 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 曼亿点 原创 👨💻 收录于专栏:…...
Linux下的常用基本指令
基本指令 前言一、ls 指令语法功能常用选项举例注意要点关于拼接关于 -a关于文件ls与/的联用ls与根目录ls与任意文件夹ls与常用选项与路径 ls -d与ls -ldls与ll 二、pwd命令语法功能常用选项注意要点window与Linux文件路径的区别家目录 三、cd 指令语法功能举例注意要点cd路径.…...
phpstorm环境配置与应用
在 PhpStorm 中配置 PHP 开发环境及进行一些常用的应用设置涉及以下几个主要步骤: ### 1. 安装和激活 PhpStorm - **下载安装**: 访问 JetBrains 官网下载最新版本的 PhpStorm 安装包,然后按照提示进行安装。 - **激活**: 启动 PhpStorm,你可…...
【Qt 学习笔记】Qt常用控件 | 布局管理器 | 水平布局Horizontal Layout
博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Qt常用控件 | 布局管理器 | 水平布局Horizontal Layout 文章编号&…...
Hive Aggregation 聚合函数
Hive Aggregation 聚合函数 基础聚合 增强聚合...
Unity 性能优化之GPU Instancing(五)
提示:仅供参考,有误之处,麻烦大佬指出,不胜感激! 文章目录 前言一、GPU Instancing使用方法二、使用GPU Instancing的条件三、GPU Instancing弊端四、注意五、检查是否成功总结 前言 GPU Instancing也是一种Draw call…...
LeetCode 138. 随机链表的复制
目录 1.原题链接: 2.结点拆分: 代码实现: 3.提交结果: 4.读书分享: 1.原题链接: 138. 随机链表的复制 2.结点拆分: ①.拷贝各个结点,连接在原结点后面; ②.处…...
【PC微信小程序点不动处理方法】
描述 在使用电脑小程序抓包的时候发现原来能点的小程序今天不能点了。就是原来有个输入车牌号的输入框点击会出现车牌号键盘,现在不行了,经过卸载安装发现不是微信的问题,是WeChatAppEx.exe 的bug。早期使用的是不带ex的都没有问题升级以后&…...
量化交易:日内网格交易策略.md
哈喽,大家好,我是木头左! 本文将详细介绍日内网格交易策略的原理,并结合Python代码示例,展示如何在掘金平台上实现这一策略。 策略原理 日内网格交易策略的核心思想是在一天的交易时间内,通过设置多个买卖…...
Ubuntu 20.04在Anaconda虚拟环境中配置PyQt4
一、创建一个虚拟环境 1 创建一个python2.7的虚拟环境: conda create -n pyqt4 numpy matplotlib python2.72 在环境中安装几个需要的包: pip install Theano pip install python-opencv3.4.0.14 pip install qdarkstyle pip install dominate二、在主…...
charts3D地球--添加航线
要在地球视角下画出海运路线图 方案 添加 globl 地球创建geo地理坐标系创建canvas对象用于承载地图世界地图this.worldChart //初始化canvas节点let cav document.createElement("canvas");this.$echarts.registerMap("world", geoJson);this.worldCha…...
变色龙还是树懒:揭示大型语言模型在知识冲突中的行为
你是知识变色龙还是树懒?我今天在ICLR学到一个很有趣的术语,叫做证据顺序(order of evidence)。 大模型RAG处理知识冲突的探讨: 在检索增强生成(Retrieval-Augmented Generation, RAG)的过程中,技术团队会将检索到的前几名文档作为证据,并提示(prompt)给大型语言模型(Large La…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
