嵌入式:基于STM32的智能家居照明控制系统
在智能家居系统中,自动照明控制不仅提高了居住舒适度,还有助于节能减排。本教程旨在引导读者通过使用STM32微控制器来开发一个智能照明控制系统。该系统能够根据环境光线自动调整室内照明的亮度,并支持通过简单的用户界面手动控制光线。
一、开发环境和硬件准备
硬件要求
- 微控制器:STM32F103C8T6,具有足够的GPIO端口和适合初级到中级项目的性能。
- 开发板:STM32F103C8T6 Development Board,易于接入各种传感器和执行器。
- 外部设备:照度传感器(如BH1750)、继电器模块、LED灯或其他家用灯具。
软件要求
- 集成开发环境(IDE):STM32CubeIDE,提供全面的开发支持。
- 固件库:STM32CubeMX,用于简化外设配置和代码初始化。
安装和配置
- 安装STM32CubeIDE:从ST官网下载并安装STM32CubeIDE。
- 使用STM32CubeMX创建项目:选择STM32F103C8T6芯片,配置所需的GPIO、ADC和通信接口,生成初始化代码。
二、应用场景:居家环境照明调节
设计目标
设计一个系统,它可以根据环境光线自动调节室内照明的亮度,并允许用户通过物理按钮或移动应用进行手动控制。
代码实现
#include "stm32f1xx_hal.h"
#include "light_sensor.h" // 假设已有的光线传感器驱动库void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC_Init(void);
static void MX_USART_Init(void);int main(void)
{HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_ADC_Init();MX_USART_Init();while (1){uint32_t light_level = read_light_level(); // 读取光线强度if (light_level < LIGHT_THRESHOLD) {turn_on_lights(); // 如果光线低于阈值,开灯} else {turn_off_lights(); // 如果光线高于阈值,关灯}HAL_Delay(5000); // 每5秒检查一次光线强度}
}void turn_on_lights(void)
{// 控制继电器或其他开关电路以打开灯具
}void turn_off_lights(void)
{// 控制继电器或其他开关电路以关闭灯具
}void MX_ADC_Init(void)
{// 初始化ADC,用于读取光线传感器数据
}void SystemClock_Config(void)
{// 系统时钟配置
}void Error_Handler(void)
{__disable_irq();while (1){}
}
⬇帮大家整理了单片机的资料
包括stm32的项目合集【源码+开发文档】
点击下方蓝字即可领取,感谢支持!⬇
点击领取更多嵌入式详细资料
问题讨论,stm32的资料领取可以私信!
问题解决方案
- 环境适应性:系统通过不断监测环境光线并相应调节照明,以最优化光线使用和节能。
- 用户交互:提供物理按钮和可能的移动应用界面,让用户可以方便地覆盖自动控制或调整灯光设置。
- 可靠性与安全性:采用适当的硬件隔离和电路保护措施,确保系统在异常情况下安全运行。
通过本教程,开发者将能够了解到如何在STM32平台上实现基于环境光线的自动照明调节系统,为家庭或办公自动化提供创新的解决方案。
相关文章:
嵌入式:基于STM32的智能家居照明控制系统
在智能家居系统中,自动照明控制不仅提高了居住舒适度,还有助于节能减排。本教程旨在引导读者通过使用STM32微控制器来开发一个智能照明控制系统。该系统能够根据环境光线自动调整室内照明的亮度,并支持通过简单的用户界面手动控制光线。 一、…...
三种基本排序-冒泡,选择,二分
闲话不多说,直接上代码,简明易懂,条理清晰,交互性强,尽善尽美 码住,建议copy下来: 先上二分法吧,稍复杂点的,代码多一些,用了函数调用 二分排序࿱…...
windows查找重复的物理地址
单独查询所有物理(mac)地址(cmd执行):arp -a 查找同一局域网下重复的mac,打开power shell执行以下命令: Get-NetNeighbor | Where-Object { $_.State -eq "Reachable" } | Select-O…...
linux进阶高级配置,你需要知道的有哪些(8)-shell脚本应用(三)
1、for循环语句的结构: for 变量名 in 取值列表 do 命令序列 done 2、while循环语句结构: while 条件测试 do 命令序列 done 3、for和while的区别 for:控制循环来自于取值列表 while:控制循环来自于条件测试 4、case语句的…...
安全测试|常见SQL注入攻击方式、影响及预防
SQL注入 什么是SQL注入? SQL注入是比较常见的网络攻击方式之一,主要攻击对象是数据库,针对程序员编写时的疏忽,通过SQL语句,实现无账号登录,篡改数据库。 SQL注入简单来说就是通过在表单中填写包含SQL关键…...
【Git】Git在Gitee上的基本操作指南
文章目录 1. 查看 git 版本2. 从Gitee克隆仓库:3. 复制文件到工作目录:4. 将未跟踪的文件添加到暂存区:5. 在本地提交更改:6. 将更改推送到远程仓库(Gitee):7. Windows特定提示: 1. …...
国债期货怎么买?十年国债交易手册
国债,简单来说,就是国家为了筹集资金而向大众借钱的一种方式。国家通过发行债券,向投资者承诺在约定的时间里支付利息,并在到期时归还本金。因为是国家发行的,所以国债的信用等级非常高,通常被认为是非常安…...
公司申请增加公众号数量
一般可以申请多少个公众号?众所周知,在2013年前后,公众号申请是不限制数量的,后来企业开始限制申请50个,直到2018年的11月tx又发布,其中个人主体可申请公众号由2个调整为1个,企业主体由50个调整…...
什么是.faust勒索病毒?应该如何防御?
faust勒索病毒详细介绍 faust勒索病毒是一种新型的勒索软件,最早出现在2018年。该病毒通过加密计算机系统中的文件并要求支付赎金来解锁文件,从而获取经济利益。与传统的勒索软件相比,faust勒索病毒采用了更加先进的加密算法和隐藏技术&#…...
邓闲小——生存、生活、生命|真北写作
人生有三个层次∶生存、生活、生命。 生存就是做必须做的事。生存的模式是邓,是交易,是买卖。别人需要的东西,你生产出来,卖给他。哪怕这个东西没啥用,也可以卖,情绪也可以卖。你需要的东西,你花…...
品牌舆情都包含什么内容?建议收藏
一个品牌的声誉、形象、产品质量、服务质量等,无时无刻不在接受着大众的检验。互联网传播迅速,一个不好的舆论直接导致整个品牌的声誉受到严重影响。品牌舆情都包含什么内容?接下来伯乐网络传媒就来给大家讲一讲。 一、品牌舆情的基本构成 1…...
MQTT 5.0 报文解析 04:PINGREQ 与 PINGRESP
欢迎阅读 MQTT 5.0 报文系列 的第四篇文章。在上一篇中,我们已经介绍了 MQTT 5.0 中的 SUBSCRIBE 报文和 UNSUBSCRIBE 报文。现在,我们将介绍用于维持连接的控制报文:PINGREQ 和 PINGRESP。 除了用于连接、发布和订阅的控制报文,…...
【算法刨析】完全背包
完全背包与01背包的区别 01背包对于一个物品只能选择一次,但是完全背包可以选择任意次; 思路 和01背包类似,01背包我们只需要判断选或不选,完全背包也是如此,不同的是,对于这个物品我们在判断选后在增加一…...
notepad++
文章目录 换行 换行 根据需要选择是否要自动换行或者一行展示。 点击视图 选中或者取消选中自动换行...
Python ValueError: bad transparency mask
修改前 修复后 运行正常 from PIL import Image# 读取图片 #报错信息解决ValueError: bad transparency mask--相关文档地址https://blog.csdn.net/kalath_aiur/article/details/103945309 #1. 检查 alpha 通道是否是一个有效的掩码。如果不是,则需要对 alpha 通道…...
Linux本地部署Nightingale夜莺监控并实现远程访问提高运维效率
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
开关电源功率测试方法:输入、输出功率测试步骤
在现代电子设备中,开关电源扮演着至关重要的角色,其效率和稳定性直接影响到整个系统的性能。因此,对开关电源进行功率测试成为了电源管理的重要环节。本文将详细介绍如何使用DC-DC电源模块测试系统对开关电源的输入输出功率进行准确测量&…...
QT 文字转语言插件
1.在工程.pro文件中添加 QT texttospeech 2.在头文件中添加 #include <QTextToSpeech> 3.使用的方法 QString str"欢迎使用智慧教育学习平台";QTextToSpeech *Speechernew QTextToSpeech;const QVector<QVoice> voices Speecher->availableV…...
Kubernetes(k8s)的认证(Authentication)策略解析
Kubernetes(k8s)的认证(Authentication)策略是确保只有经过验证的实体(用户、服务账户等)能够访问API服务器的基础安全措施。Kubernetes支持多种认证方法,以下是主要的认证策略: X50…...
Scikit-Learn决策树
Scikit-Learn决策树 1、决策树分类2、Scikit-Learn决策树分类2.1、Scikit-Learn决策树API2.2、Scikit-Learn决策树初体验2.3、Scikit-Learn决策树实践(葡萄酒分类) 1、决策树分类 2、Scikit-Learn决策树分类 2.1、Scikit-Learn决策树API 官方文档&#…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
