当前位置: 首页 > news >正文

【class8】人工智能初步(图像识别-----卷积神经网络)

上节回顾

上节课,我们简单了解了图像识别和深度学习的相关知识。
快速回顾一下吧~

A图像识别是以图像的主要特征为基础的。
B. 图像分辨率决定图像的质量。

C. 像素是图像中的最小单位
D. 在图像识别的原理上,计算机和人类在本质上没有区别

E.人工智能的核心驱动力是机器学习, 而深度学习是机器学习的一个特定分支。

这节课,我们将更深入地了解:在图像识别领域,应用最为广泛的深度学习算法--卷积神经网络。并为实现“电脑图像的智能识别和自动分类”做一些前期准备。

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。在上面提到的典型算法中,卷积神经网络CNN就是受到人类视觉神经系统的启发,最擅长进行图像处理的一种算法。

输入层、输出层比较容易理解。在图像识别中,输入层输入的是图像,输出层输出的是识别结果。

那什么是隐含层呢?隐含层主要由卷积层、池化层和全连接层3类常见的结构组成。连接顺序通常为:卷积层-池化层-全连接层

                                      

比如,对这样⼀张 1000×1000 分辨率的图像,需要处理的参数就高达上百万个。这么⼤量的数据处理起来⾮常消耗资源,⽽且这还只是⼀张不算太⼤的图⽚。

池化层将复杂问题简单化,把大量参数降维成少量参数,再做处理。因为在大部分场景下,降维并不会影响结果比如,将这样一张图像从1000像素缩⼩到200像素,并不会影响我们识别男孩还是女孩,机器也是如此。

  1. 卷积层能够提取图像中的局部特征
  2. 池化层能够⼤幅降低参数量级
  3. 大部分情况下,降维并不会影响识别结果

D当图像的位置或者角度发⽣了变化,CNN也能有效的识别出来是类似的图像。

这些不同的层次,有什么作用 🤔
我们可以将卷积层和池化层看成图像自动提取特征的过程。在提取完成之后,仍然需要使用全连接层来完成分类任务。
深度学习需要输入的图像信息非常庞大。
只有经过卷积层和池化层降维过的数据,全连接层才能”跑得动”

卷积神经网络是一个多层结构

卷积神经网络的结构由输入层、隐含层和输出层组成

隐含层的结构由卷积层、池化层,全连接层组成

卷积神经网络最常用于图像处理

卷积神经网络的应用

卷积神经网络在图像领域的应用处处可见,比如:

1. 图像分类、检索

一项基础应用,能节省大量的人工成本,将图像进行有效的分类。

典型场景:图像搜索

橙色软件搜索同款用到的图像搜索

2. 目标定位检测

在图像中定位目标,并确定目标的位置及大小。

典型场景:自动驾驶、安防、医疗

开车外出用到的行车记录仪

3. 目标分割

简单理解就是一个像素级的分类

典型场景:视频后期加工、图像生成

P图用到的美图秀秀

4. 人脸识别

基于人的脸部特征信息进行身份识别的一种生物识别技术。

典型场景:安防、金融、生活

进出小区用到的人脸识别

5. 骨骼识别

识别身体的关键骨骼,以及追踪骨骼的动作。

典型场景:安防、电影、游戏、图像视频生成

互动游戏中实时评估人体姿态和动作轨迹的操作

面临的困难

既然卷积神经网络的应用如此广泛,我们能通过不停地加深网络,自己训练一款对图像处理表现更好的模型吗?现实往往没有这样简单。

我们以制造桌子为例:
木材就是数据,提供基础的素材;
制造桌子的流水线就是一套模型,其中包括了网络层数的设计,解决把木头变成桌子的问题;
工厂里的机器就是计算能力,机器越厉害,制造桌子的效率就越高,速度就越快。

模型设计

深度学习的“深”不仅代表着神经网络的层数之多,更进一步代表着模型参数之多。
但是网络的设计并不是简单的层数上的纵向堆叠,每一层的参数都需要不断反复的调试,投入大量的人力、物力和时间。
因此,绝大多数人只能使用现成的模型,而现成的模型往往又不能通用

数据

一个“见多识广”的模型,对实际问题的处理和表现才会更加准确。
这个过程可以分3步理解:
只有足够的数据作为深度学习的输入;
计算机才能学会以往只有人类才能理解的知识;
然后才能将这些知识应用到之前从来没有看见过的新数据上。

计算能力

大量的数据和参数需要大量的计算资源支持,因此越深越复杂的网络对计算资源的需求也越大。
即使一个简单的深度学习模型,跑一次数据的时间也短则数小时,长则数天,普通的电脑很难满足要求。

前面我们通过「情感倾向分析」这个接口,体验了在实际应用中,调用API的绝对优势。API的扩展性和灵活性是软件设计最美妙的艺术之一。在这里,我们同样采用这样的方式。

有了之前的基础,在这里,我们「接入百度智能云图像识别服务」只需3步:

a. 创建应用

b. 获取AppID、API Key和Secret Key

c. 导入和新建AipImageClassify

接下来,我们会完成这3步,做好实战准备。

在【创建应用】页面:

1. 为你的应用设定名称;

2. 领取接口的免费额度;

3. 对应用进行简短的描述;

4. 填写完毕后,选择【立即创建】完成操作。

b. 获取AppID、API Key和Secret Key

创建完成后,点击「查看应用详情」就可以看到AppID、API Key和Secret Key
这是系统分配给用户的,均为字符串,用于标识用户,为访问做签名验证。
我们需要使用这三个ID来调用对应的API。

c. 导入和新建AipImageClassify

在上一个项目中,我们已经安装好了 Python SDK。
现在直接导入和新建AipImageClassify即可创建图像识别客户端。

创建图像识别客户端

代码的作用

AipImageClassify是图像识别的Python SDK客户端,为使用图像识别的开发人员提供了一系列的交互方法。
AipNlp一样,在使用之前,我们需要创建图像识别客户端。

代码:

# 从aip中导入AipImageClassify

from aip import AipImageClassify

# 存储访问密钥信息,包括客户端ID、API接口验证序号和API接口密钥

APP_ID = "10252021"

API_KEY = "ZHe7788sh11GEjIAdEKeY"

SECRET_KEY = "JMMzHe7788BUSH1ZhEnM1YUEhh"

# 新建一个AipImageClassify,并赋值给变量client

client = AipImageClassify(APP_ID, API_KEY, SECRET_KEY)

# 输出client

print(client)

分析代码:

导入AipImageClassify

创建图像识别客户端,首先要导入AipImageClassify。
这里,通过from...import...,从
aip中导入AipImageClassify,为我们提供图像识别的接口支持。

存储认证信息

导入后,我们需要使用获取的AppID、API Key和Secret Key来创建图像识别客户端AipImageClassify。
这里,为了方便使用,先将AppID、API Key和Secret Key以字符串的形式,依次赋值给变量APP_ID、API_KEY和SECRET_KEY。

新建AipImageClassify对象

只需把APP_ID、API_KEY和SECRET_KEY,依次传入AipImageClassify()函数中,即可新建一个AipImageClassify,也就是图像识别客户端。


这里,将返回的AipImageClassify对象赋值给变量client并输出。到这里,我们就完成了解决问题的第一步:接入百度智能云图像识别服务。磨刀不误砍柴工,这两节课,我们学习了很多图像识别和深度学习的知识。后面两节课,我们将进入实战部分,一起实现“电脑图像的智能识别和自动分类”。

相关文章:

【class8】人工智能初步(图像识别-----卷积神经网络)

上节回顾 上节课,我们简单了解了图像识别和深度学习的相关知识。 快速回顾一下吧~ A图像识别是以图像的主要特征为基础的。B. 图像分辨率决定图像的质量。 C. 像素是图像中的最小单位D. 在图像识别的原理上,计算机和人类在本质…...

Node.js安装及环境配置(超详细!保姆级!!)

目录 一、进入官网地址下载安装包 二、安装程序 三、环境配置 四、测试 五、安装淘宝镜像 一、进入官网地址下载安装包 Node.js — Download Node.js (nodejs.org) 选择对应你系统的 node.js 版本,我选择的是Windows系统,64位 点击图中选项&#…...

利用反射如何动态生成sql

一.自定义注解 UpdateWhere Target({ElementType.FIELD}) //作用于类 Retention(RetentionPolicy.RUNTIME) //运行时有效 Documented //可以出现在文档里 Inherited public interface UpdateWhere {}二.创建实体类接受 pu…...

SpringBoot项目中使用Redis,Mybatis和JWT

在Spring Boot项目中,结合Redis,MyBatis和JWT的使用可以提供以下功能: Redis的作用: 1.缓存:Redis可以用作缓存存储,提高应用程序的性能和响应速度。特别是对于频繁读取但不经常更新的数据,如配…...

CSS2(一):CSS选择器

文章目录 1、CSS基础1.1 CSS简介1.2 CSS编写位置1.2.1 行内样式1.2.2 内部样式1.2.3 外部样式1.2.4 样式优先级 1.2.5 CSS代码风格 2、CSS选择器2.1、基本选择器2.1.1 通配选择器2.1.2 元素选择器2.1.3 类选择器2.1.4 ID选择器2.1.5 总结 2.2、CSS复合选择器2.2.1 交集选择器2.…...

LeetCode题练习与总结:不同的二叉搜索树--96

一、题目描述 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n 3 输出:5示例 2: 输入:n 1 输出&…...

第八十一章 将 Web 应用程序与远程 Web 服务器结合使用 - 如果从 Web 服务器提供静态文件

文章目录 第八十一章 将 Web 应用程序与远程 Web 服务器结合使用 - 如果从 Web 服务器提供静态文件如果从 Web 服务器提供静态文件配置 Web 服务器路径将虚拟目录添加到 IIS将别名添加到 Apache 配置 第八十一章 将 Web 应用程序与远程 Web 服务器结合使用 - 如果从 Web 服务器…...

AVL树、红黑树

数据结构、算法总述:数据结构/算法 C/C-CSDN博客 AVL树 定义 空二叉树是一个 AVL 树如果 T 是一棵 AVL 树,那么其左右子树也是 AVL 树,并且 ,h 是其左右子树的高度树高为 平衡因子:右子树高度 - 左子树高度 创建节点…...

Vscode编辑器 js 输入log自动补全

最近换了新电脑,新下载了Vscode,记录一下设置项。 Vscode 版本 想要的效果 js文件中输入log(点击tab键),自动补全为 console.log() Vscode 文件》首选项》设置 搜索:snippets Emmet: Show Suggestions…...

structured concurrency

1. 基于 c executions的异步实现 - 从理论到实践 - 知乎 (zhihu.com)...

【免费】在线识别通用验证码接口

模块优势价格5元1000次&#xff0c;每天免费100次api文档支持 使用量小的完全够用了 <?phpfunction Post_base64($base64_str){$url http://api.95man.com:8888/api/Http/Recog?Taken41******QK&imgtype1&len0 ; $fields array( ImgBase64>$base64_str); $ch…...

如何通过汽车制造供应商协同平台,提高供应链的效率与稳定性?

汽车制造供应商协同是指在汽车制造过程中&#xff0c;整车制造商与其零部件供应商之间建立的一种紧密合作的关系。这种协同关系旨在优化整个供应链的效率&#xff0c;降低成本&#xff0c;提高产品质量&#xff0c;加快创新速度&#xff0c;并最终提升整个汽车产业的竞争力。以…...

使用LangChain创建简易聊天机器人

LangChain 是什么 就是一个框架或者说是一个工具&#xff0c;用来写 AI 应用。对&#xff0c;没有错&#xff01;AI小白也可以&#xff0c;有手就行&#xff01; LangChain有几个核心模块&#xff1a;Models、Prompts、Chains、Indexes、Memory、Agents。 这篇主要介绍Models、…...

研究生学习---找工作

规划 研一~研二上学期完成小论文&#xff0c;实习&#xff0c;秋招 竞赛&#xff1a;kaggle&#xff1f; 面试题一般简单且为原题&#xff0c;笔试题目很难&#xff0c;不会出原题 项目 找工作软件...

偶然发现了Python的一个BUG。。。

一般情况下&#xff0c;dict(id1, **{id: 1})这句代码应该报TypeError。但如果在捕获了其他异常的情况下&#xff0c;再来执行这句代码&#xff0c;却是会报KeyError&#xff0c;如下图&#xff1a; Python3.10和Python3.9也能复现该情况&#xff0c;正当我摩拳踩掌&#xff0c…...

36. 有效的数独 - 力扣(LeetCode)

基础知识要求&#xff1a; Java&#xff1a;方法、for循环、if判断、数组 Python&#xff1a; 方法、for循环、if判断、列表、集合 题目&#xff1a; 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 &#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一…...

开源收银系统在服装连锁店中发挥的重要作用

在当今竞争激烈的零售市场中&#xff0c;服装连锁店面临着日益复杂的经营环境和多样化的消费需求。在这样的背景下&#xff0c;开源收银系统成为了服装连锁店管理的关键利器。该系统不仅提供了高效的收银功能&#xff0c;还涵盖了进销存管理、会员管理、门店补货等多方面功能&a…...

代码随想录三刷day51

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣200. 岛屿数量二、力扣695. 岛屿的最大面积三、力扣1020. 飞地的数量四、力扣130. 被围绕的区域 前言 依然是从地图周边出发&#xff0c;将周边空格相邻…...

基于python+Django的二维码生成算法设计与实现

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Php和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…...

pytorch 2.0 多线程并行,导致GPU利用100%,卡住

背景&#xff1a; 程序中有pytorch模型两个&#xff0c;yolov5&#xff0c;crnn。 之前无论是pth格式&#xff0c;还是TRT格式&#xff0c;并行的都没有问题。 最近发现&#xff0c;多线程ThreadPoolExecutor(max_workers2)调用的时候&#xff0c;即单个进程内处理一张图像&a…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...