当前位置: 首页 > news >正文

tensorflow实现二分类

在这里插入图片描述

# 导入所需库和模块
from tensorflow.keras.layers import Dense, Input, Activation  # 导入神经网络层和激活函数模块
from tensorflow.keras.models import Sequential  # 导入Keras的Sequential模型
import pandas as pd  # 导入Pandas库用于数据处理
import numpy as np  # 导入NumPy库用于数值计算
from matplotlib import pyplot as plt  # 导入Matplotlib库用于数据可视化
from sklearn.model_selection import train_test_split  # 导入数据集分割模块
from sklearn.metrics import accuracy_score  # 导入评估模块# 创建神经网络模型
model = Sequential()  # 创建Sequential模型,用于堆叠神经网络层# 添加输入层和隐藏层
model.add(Dense(units=20, input_dim=2, activation='sigmoid'))  # 添加具有20个神经元和sigmoid激活函数的隐藏层
model.add(Dense(units=1, activation='sigmoid'))  # 添加具有1个神经元和sigmoid激活函数的输出层# 查看模型结构摘要
model.summary()# 编译模型,配置优化器、损失函数和评估指标
model.compile(loss='categorical_crossentropy',  # 使用分类交叉熵作为损失函数optimizer='sgd',  # 使用随机梯度下降算法进行优化metrics=['accuracy'])  # 评估指标为准确率data = pd.read_csv('D:/pythonDATA/data.csv')  # 从CSV文件中读取数据
X = data.drop(['y'], axis=1)  # 特征变量
y = data.loc[:, 'y']  # 目标变量# 数据可视化
fig1 = plt.figure(figsize=(5, 5))  # 创建画布
passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1])  # 目标为1的数据点
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0])  # 目标为0的数据点
plt.legend((passed, filed), ('passed', 'filed'))  # 设置图例
plt.xlabel('x1')  # x轴标签
plt.ylabel('x2')  # y轴标签
plt.title('raw data')  # 标题
plt.show()  # 显示图形# 数据分割(训练集和测试集)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=10)  # 将数据集划分为训练集和测试集# 重新编译模型以使用不同的优化器和损失函数
model.compile(optimizer='adam', loss='binary_crossentropy')  # 配置解决问题的方法和损失函数# 进行拟合训练,迭代训练三千次,降低其损失函数
model.fit(X_train, y_train, epochs=3000)  # 拟合模型,进行训练# 进行预测
y_test_predict = model.predict_classes(X_test)  # 对测试集进行预测
accuracy_test = accuracy_score(y_test, y_test_predict)  # 计算预测准确率# 生成范围内的预测结果
xx, yy = np.meshgrid(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01))  # 创建预测范围
x_range = np.c_[xx.ravel(), yy.ravel()]  # 生成范围内所有点的坐标
print("输出坐标:")
print(x_range)
y_range_predict = model.predict_classes(x_range)  # 预测范围内所有点的类别# 格式化输出并绘图展示结果
y_range_predict_form = pd.Series(i[0] for i in y_range_predict)  # 将预测结果格式化为Series类型print(y_range_predict_form)  # 打印格式化后的预测结果
print(accuracy_test)  # 打印预测准确率fig2 = plt.figure(figsize=(5, 5))  # 创建画布
passed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 1], x_range.loc[:, 'x2'][y == 1])  # 预测为1的数据点
filed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 0], x_range.loc[:, 'x2'][y == 0])  # 预测为0的数据点passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1])  # 实际为1的数据点
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0])  # 实际为0的数据点plt.legend((passed, filed, passed_predict, filed_predict), ('passed', 'filed', 'passed_predict', 'filed_predict'))  # 设置图例
plt.xlabel('x1')  # x轴标签
plt.ylabel('x2')  # y轴标签
plt.title('raw result')  # 标题
plt.show()  # 显示图形

相关文章:

tensorflow实现二分类

# 导入所需库和模块 from tensorflow.keras.layers import Dense, Input, Activation # 导入神经网络层和激活函数模块 from tensorflow.keras.models import Sequential # 导入Keras的Sequential模型 import pandas as pd # 导入Pandas库用于数据处理 import numpy as np …...

简化路径[中等]

优质博文:IT-BLOG-CN 一、题目 给你一个字符串path,表示指向某一文件或目录的Unix风格 绝对路径 (以/开头),请你将其转化为更加简洁的规范路径。在Unix风格的文件系统中,一个点.表示当前目录本身&#x…...

记一次若依项目组装树型结构数据的效率优化

背景 最近公司的项目使用了若依框架做开发,发现部门管理功能的部门如果有3万笔记录时,查询部门信息并组装为父子结构时运行特别缓慢,本地运行需要3分钟才能加载出来,因此接到优化的工作。 代码展示 首先看看表结构是这么定义的…...

秒杀系统之系统优化

3 系统优化 对于一个软件系统,提高性能可以有很多种手段,如提升硬件水平、调优JVM 性能,这里主要关注代码层面的性能优化—— 减少序列化:减少 Java 中的序列化操作可以很好的提升系统性能。序列化大部分是在 RPC 阶段发生&#x…...

【介绍下Python多线程,什么是Python多线程】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…...

FPGA相关论文阅读

一、Achieving 100Gbps Intrusion Prevention on a Single Server 论文名称中文翻译:在单台服务器上实现100Gbps吞吐量的入侵防御检测。 文章中的Mixed-1和Norm-1 二、Distributed Password Hash Computation on Commodity Heterogeneous Programmable Platforms…...

瑞芯微RK3588驱动设计之DVP并口摄像头2

dts配置看瑞芯微RK3588驱动配置之DVP并口摄像头1_rockchip 调试dvp设备 直接显示摄像头数据-CSDN博客 这里看看驱动的具体实现,以gc2145为例。 gc2145的驱动源码如下: // SPDX-License-Identifier: GPL-2.0 /** GC2145 CMOS Image Sensor driver*** C…...

安卓手机APP开发__支持64位的架构

安卓手机APP开发__支持64位的架构 目录 概述 读取你的APP 快速的状态检查 你的APP使用了原生的代码吗? 你的APP包含了64位的代码库吗? 确保在这些目录中有原生的代码库. 使用APK分析器查看原生的代码库 通过解压缩APK查看原生的代码库 用安卓工…...

Foxmail使用经验总结

目录 1.概述 2.版本历史 3.使用方法 3.1.安装和设置账户 3.2.收取和阅读邮件 ​​​​​​​3.3.发送邮件 ​​​​​​​3.4.管理联系人 ​​​​​​​3.5.日程安排和任务管理 ​​​​​​​3.6.定制设置和插件 ​​​​​​​3.7.跨平台同步 4.小结 1.概述 Fox…...

信息系统项目管理师0601:项目立项管理 — 考点总结(可直接理解记忆)

点击查看专栏目录 项目立项管理 — 考点总结(可直接理解记忆) 1.项目建议书(又称立项申请)是项目建设单位向上级主管部门提交项目申请时所必须的文件,是对拟建项目提出的框架性的总体设想。在项目建议书批准后,方可开展对外工作(掌握)。 2.项目建议书应该包括的核心内…...

实验三:机器学习1.0

要求: 针对实验1和实验2构建的数据集信息分析 设计实现通过数据简介进行大类分类的程序 代码实现: 训练集数据获取: read_data.py import json import pickledef read_intro():data []trypathr"E:\Procedure\Python\Experiment\f…...

Vue 3 + Vite项目实战:常见问题与解决方案全解析

文章目录 一、项目使用本地图片打包后不显示1、在html中时候,本地运行和打包后线上运行都ok。2、用动态数据,本地运行ok,打包后线上运行不显示3、适用于处理单个链接的资源文件4、用动态数据且本地和线上访问都可显示 二、使用插件vite-plugi…...

飞天使-k8s知识点31-rancher的正确打开方式

文章目录 安装之前优化一下内核参数以及系统内核版本 rancher安装主要是使用以下命令nginx的配置为解决办法 安装之前优化一下内核参数以及系统内核版本 内核版本 4.17 cat > /etc/modules-load.d/iptables.conf <<EOF ip_tables iptable_filter EOF 然后重启服务器…...

Vue.component v2v3注册(局部与全局)组件使用详解

在Vue中&#xff0c;可以通过两种方式注册组件&#xff1a;局部注册和全局注册。 局部注册是在父组件中通过import和components选项注册的组件&#xff0c;仅在当前父组件及其子组件中可用。 // 父组件中import ChildComponent from ./ChildComponent.vue;export default {co…...

HNU-算法设计与分析-作业5

第五次作业【回溯算法】 文章目录 第五次作业【回溯算法】<1> 算法分析题5-3 回溯法重写0-1背包<2> 算法分析题5-5 旅行商问题&#xff08;剪枝&#xff09;<3> 算法实现题5-2 最小长度电路板排列问题<4> 算法实现题5-7 n色方柱问题<5> 算法实现…...

基础之音视频2

01 前言 02 mp 03 mp实例 简易音乐播放器 04 音频 sound-pool 1.作用 播放多个音频&#xff0c;短促音频 2.过程 加载load- 3.示例 模拟手机选铃声 步骤&#xff1a; 创建SoundPool对象&#xff0c;设置相关属性 音频流存入hashmap 播放音频 05 videoview 3gp 体积小 mp4 …...

两小时看完花书(深度学习入门篇)

1.深度学习花书前言 机器学习早期的时候十分依赖于已有的知识库和人为的逻辑规则&#xff0c;需要人们花大量的时间去制定合理的逻辑判定&#xff0c;可以说是有多少人工&#xff0c;就有多少智能。后来逐渐发展出一些简单的机器学习方法例如logistic regression、naive bayes等…...

21【Aseprite 作图】画白菜

1 对着参考图画轮廓 2 缩小尺寸 变成这样 3 本来是红色的描边&#xff0c;可以通过油漆桶工具&#xff08;取消 “连续”&#xff09;&#xff0c;就把红色的轮廓线&#xff0c;变成黑色的 同时用吸管工具&#xff0c;吸取绿色和白色&#xff0c;用油漆桶填充颜色 4 加上阴影…...

2024.05.15 [AI开发配环境]个人使用最新版远程服务器配环境大纲:docker、云盘、ssh、conda等

不包括在宿主机安装docker。 docker 找到心仪的镜像&#xff0c;比如从网上pull&#xff1a;https://hub.docker.com/r/pytorch/pytorch/tags?page&page_size&ordering&name2.0.1 docker pull pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel# 新建容器 docker r…...

opencv 轮廓区域检测

直线检测 void LineDetect(const cv::Mat &binaryImage) {cv::Mat xImage,yImage,binaryImage1,binaryImage2;// 形态学变化&#xff0c;闭操作 先膨胀&#xff0c;再腐蚀 可以填充小洞&#xff0c;填充小的噪点cv::Mat element cv::getStructuringElement(cv::MORPH_RE…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...