tensorflow实现二分类

# 导入所需库和模块
from tensorflow.keras.layers import Dense, Input, Activation # 导入神经网络层和激活函数模块
from tensorflow.keras.models import Sequential # 导入Keras的Sequential模型
import pandas as pd # 导入Pandas库用于数据处理
import numpy as np # 导入NumPy库用于数值计算
from matplotlib import pyplot as plt # 导入Matplotlib库用于数据可视化
from sklearn.model_selection import train_test_split # 导入数据集分割模块
from sklearn.metrics import accuracy_score # 导入评估模块# 创建神经网络模型
model = Sequential() # 创建Sequential模型,用于堆叠神经网络层# 添加输入层和隐藏层
model.add(Dense(units=20, input_dim=2, activation='sigmoid')) # 添加具有20个神经元和sigmoid激活函数的隐藏层
model.add(Dense(units=1, activation='sigmoid')) # 添加具有1个神经元和sigmoid激活函数的输出层# 查看模型结构摘要
model.summary()# 编译模型,配置优化器、损失函数和评估指标
model.compile(loss='categorical_crossentropy', # 使用分类交叉熵作为损失函数optimizer='sgd', # 使用随机梯度下降算法进行优化metrics=['accuracy']) # 评估指标为准确率data = pd.read_csv('D:/pythonDATA/data.csv') # 从CSV文件中读取数据
X = data.drop(['y'], axis=1) # 特征变量
y = data.loc[:, 'y'] # 目标变量# 数据可视化
fig1 = plt.figure(figsize=(5, 5)) # 创建画布
passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1]) # 目标为1的数据点
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0]) # 目标为0的数据点
plt.legend((passed, filed), ('passed', 'filed')) # 设置图例
plt.xlabel('x1') # x轴标签
plt.ylabel('x2') # y轴标签
plt.title('raw data') # 标题
plt.show() # 显示图形# 数据分割(训练集和测试集)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=10) # 将数据集划分为训练集和测试集# 重新编译模型以使用不同的优化器和损失函数
model.compile(optimizer='adam', loss='binary_crossentropy') # 配置解决问题的方法和损失函数# 进行拟合训练,迭代训练三千次,降低其损失函数
model.fit(X_train, y_train, epochs=3000) # 拟合模型,进行训练# 进行预测
y_test_predict = model.predict_classes(X_test) # 对测试集进行预测
accuracy_test = accuracy_score(y_test, y_test_predict) # 计算预测准确率# 生成范围内的预测结果
xx, yy = np.meshgrid(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01)) # 创建预测范围
x_range = np.c_[xx.ravel(), yy.ravel()] # 生成范围内所有点的坐标
print("输出坐标:")
print(x_range)
y_range_predict = model.predict_classes(x_range) # 预测范围内所有点的类别# 格式化输出并绘图展示结果
y_range_predict_form = pd.Series(i[0] for i in y_range_predict) # 将预测结果格式化为Series类型print(y_range_predict_form) # 打印格式化后的预测结果
print(accuracy_test) # 打印预测准确率fig2 = plt.figure(figsize=(5, 5)) # 创建画布
passed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 1], x_range.loc[:, 'x2'][y == 1]) # 预测为1的数据点
filed_predict = plt.scatter(x_range.loc[:, 'x1'][y == 0], x_range.loc[:, 'x2'][y == 0]) # 预测为0的数据点passed = plt.scatter(X.loc[:, 'x1'][y == 1], X.loc[:, 'x2'][y == 1]) # 实际为1的数据点
filed = plt.scatter(X.loc[:, 'x1'][y == 0], X.loc[:, 'x2'][y == 0]) # 实际为0的数据点plt.legend((passed, filed, passed_predict, filed_predict), ('passed', 'filed', 'passed_predict', 'filed_predict')) # 设置图例
plt.xlabel('x1') # x轴标签
plt.ylabel('x2') # y轴标签
plt.title('raw result') # 标题
plt.show() # 显示图形相关文章:
tensorflow实现二分类
# 导入所需库和模块 from tensorflow.keras.layers import Dense, Input, Activation # 导入神经网络层和激活函数模块 from tensorflow.keras.models import Sequential # 导入Keras的Sequential模型 import pandas as pd # 导入Pandas库用于数据处理 import numpy as np …...
简化路径[中等]
优质博文:IT-BLOG-CN 一、题目 给你一个字符串path,表示指向某一文件或目录的Unix风格 绝对路径 (以/开头),请你将其转化为更加简洁的规范路径。在Unix风格的文件系统中,一个点.表示当前目录本身&#x…...
记一次若依项目组装树型结构数据的效率优化
背景 最近公司的项目使用了若依框架做开发,发现部门管理功能的部门如果有3万笔记录时,查询部门信息并组装为父子结构时运行特别缓慢,本地运行需要3分钟才能加载出来,因此接到优化的工作。 代码展示 首先看看表结构是这么定义的…...
秒杀系统之系统优化
3 系统优化 对于一个软件系统,提高性能可以有很多种手段,如提升硬件水平、调优JVM 性能,这里主要关注代码层面的性能优化—— 减少序列化:减少 Java 中的序列化操作可以很好的提升系统性能。序列化大部分是在 RPC 阶段发生&#x…...
【介绍下Python多线程,什么是Python多线程】
🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…...
FPGA相关论文阅读
一、Achieving 100Gbps Intrusion Prevention on a Single Server 论文名称中文翻译:在单台服务器上实现100Gbps吞吐量的入侵防御检测。 文章中的Mixed-1和Norm-1 二、Distributed Password Hash Computation on Commodity Heterogeneous Programmable Platforms…...
瑞芯微RK3588驱动设计之DVP并口摄像头2
dts配置看瑞芯微RK3588驱动配置之DVP并口摄像头1_rockchip 调试dvp设备 直接显示摄像头数据-CSDN博客 这里看看驱动的具体实现,以gc2145为例。 gc2145的驱动源码如下: // SPDX-License-Identifier: GPL-2.0 /** GC2145 CMOS Image Sensor driver*** C…...
安卓手机APP开发__支持64位的架构
安卓手机APP开发__支持64位的架构 目录 概述 读取你的APP 快速的状态检查 你的APP使用了原生的代码吗? 你的APP包含了64位的代码库吗? 确保在这些目录中有原生的代码库. 使用APK分析器查看原生的代码库 通过解压缩APK查看原生的代码库 用安卓工…...
Foxmail使用经验总结
目录 1.概述 2.版本历史 3.使用方法 3.1.安装和设置账户 3.2.收取和阅读邮件 3.3.发送邮件 3.4.管理联系人 3.5.日程安排和任务管理 3.6.定制设置和插件 3.7.跨平台同步 4.小结 1.概述 Fox…...
信息系统项目管理师0601:项目立项管理 — 考点总结(可直接理解记忆)
点击查看专栏目录 项目立项管理 — 考点总结(可直接理解记忆) 1.项目建议书(又称立项申请)是项目建设单位向上级主管部门提交项目申请时所必须的文件,是对拟建项目提出的框架性的总体设想。在项目建议书批准后,方可开展对外工作(掌握)。 2.项目建议书应该包括的核心内…...
实验三:机器学习1.0
要求: 针对实验1和实验2构建的数据集信息分析 设计实现通过数据简介进行大类分类的程序 代码实现: 训练集数据获取: read_data.py import json import pickledef read_intro():data []trypathr"E:\Procedure\Python\Experiment\f…...
Vue 3 + Vite项目实战:常见问题与解决方案全解析
文章目录 一、项目使用本地图片打包后不显示1、在html中时候,本地运行和打包后线上运行都ok。2、用动态数据,本地运行ok,打包后线上运行不显示3、适用于处理单个链接的资源文件4、用动态数据且本地和线上访问都可显示 二、使用插件vite-plugi…...
飞天使-k8s知识点31-rancher的正确打开方式
文章目录 安装之前优化一下内核参数以及系统内核版本 rancher安装主要是使用以下命令nginx的配置为解决办法 安装之前优化一下内核参数以及系统内核版本 内核版本 4.17 cat > /etc/modules-load.d/iptables.conf <<EOF ip_tables iptable_filter EOF 然后重启服务器…...
Vue.component v2v3注册(局部与全局)组件使用详解
在Vue中,可以通过两种方式注册组件:局部注册和全局注册。 局部注册是在父组件中通过import和components选项注册的组件,仅在当前父组件及其子组件中可用。 // 父组件中import ChildComponent from ./ChildComponent.vue;export default {co…...
HNU-算法设计与分析-作业5
第五次作业【回溯算法】 文章目录 第五次作业【回溯算法】<1> 算法分析题5-3 回溯法重写0-1背包<2> 算法分析题5-5 旅行商问题(剪枝)<3> 算法实现题5-2 最小长度电路板排列问题<4> 算法实现题5-7 n色方柱问题<5> 算法实现…...
基础之音视频2
01 前言 02 mp 03 mp实例 简易音乐播放器 04 音频 sound-pool 1.作用 播放多个音频,短促音频 2.过程 加载load- 3.示例 模拟手机选铃声 步骤: 创建SoundPool对象,设置相关属性 音频流存入hashmap 播放音频 05 videoview 3gp 体积小 mp4 …...
两小时看完花书(深度学习入门篇)
1.深度学习花书前言 机器学习早期的时候十分依赖于已有的知识库和人为的逻辑规则,需要人们花大量的时间去制定合理的逻辑判定,可以说是有多少人工,就有多少智能。后来逐渐发展出一些简单的机器学习方法例如logistic regression、naive bayes等…...
21【Aseprite 作图】画白菜
1 对着参考图画轮廓 2 缩小尺寸 变成这样 3 本来是红色的描边,可以通过油漆桶工具(取消 “连续”),就把红色的轮廓线,变成黑色的 同时用吸管工具,吸取绿色和白色,用油漆桶填充颜色 4 加上阴影…...
2024.05.15 [AI开发配环境]个人使用最新版远程服务器配环境大纲:docker、云盘、ssh、conda等
不包括在宿主机安装docker。 docker 找到心仪的镜像,比如从网上pull:https://hub.docker.com/r/pytorch/pytorch/tags?page&page_size&ordering&name2.0.1 docker pull pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel# 新建容器 docker r…...
opencv 轮廓区域检测
直线检测 void LineDetect(const cv::Mat &binaryImage) {cv::Mat xImage,yImage,binaryImage1,binaryImage2;// 形态学变化,闭操作 先膨胀,再腐蚀 可以填充小洞,填充小的噪点cv::Mat element cv::getStructuringElement(cv::MORPH_RE…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
C++中vector类型的介绍和使用
文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...
第14节 Node.js 全局对象
JavaScript 中有一个特殊的对象,称为全局对象(Global Object),它及其所有属性都可以在程序的任何地方访问,即全局变量。 在浏览器 JavaScript 中,通常 window 是全局对象, 而 Node.js 中的全局…...
python打卡day47
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import D…...
