当前位置: 首页 > news >正文

一文读懂倒排序索引涉及的核心概念

基础概念

相信对于第一次接触Elasticsearch的同学来说,最难理解的概念就是倒排序索引(也叫反向索引),因为这个概念跟我们之前在传统关系型数据库中的索引概念是完全不同的!在这里我就重点给大家介绍一下倒排序索引,这个概念搞明白之后,然后学习Elasticsearch就会清晰很多了。

正向索引和倒排序索引

在没有搜索引擎时,我们是直接输入一个网址,然后获取网站内容,这时我们的行为是:

document -> to -> words 通过文章,获取里面的单词,此谓正向索引,forward index.

有了搜索引擎后,我们的行为是:输入一个单词,找到含有这个单词或者和这个单词有关系的文章:word -> to -> documents 我们把这种索引叫做inverted index,直译过来叫做倒排序索引,也叫反向索引。

倒排序索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排序索引,可以根据单词快速获取包含这个单词的文档列表。倒排序索引主要由两个部分组成:“单词词典”和“倒排文件”

倒排序索引中重要的概念

文档(Document)

一般搜索引擎的处理对象是互联网网页,而文档这个概念要更宽泛些,代表以文本形式存在的存储对象,相比网页来说,涵盖更多种形式,比如Word,PDF,html,XML等不同格式的文件都可以称之为文档

字段(Field)

可以理解成数据库行中的字段,一个Document会由一个或多个Field组成

文档编号(Document ID)

在搜索引擎内部,会将文档集合内每个文档赋予一个唯一的内部编号,以此编号来作为这个文档的唯一标识,这样方便内部处理,每个文档的内部编号即称之为“文档编号”,后文有时会用DocID来便捷地代表文档编号。

举个例子,文档和词条之间的关系如下图:

上图中每一行就是一个Document

字段值被分析之后,存储在倒排索引中,倒排索引存储的是分词(Term)和文档(Doc),它们之间的关系,简化版的倒排索引如下图:

上图中counter代表统计分词的次数

单词词典(Lexicon)

搜索引擎的索引单位通常是单词,单词词典是由文档集合中出现过的所有单词构成的字符串集合,它用来维护文档集合中出现过的所有单词的相关信息,同时用来记载某个单词对应的倒排列表在倒排文件中的位置信息。

为了更好的理解单词词典这个抽象概念,我们通过Elasticsearch来进行举例,ES 为了能快速找到某个 Term,先将所有的 Term 排个序,然后根据二分法查找 Term,时间复杂度为 O(log n);,就像通过字典查找一样,这就是 Term Dictionary。如果 Term 太多,Term Dictionary 也会很大,放内存不现实,于是有了 Term Index。就像字典里的索引页一样,S开头的有哪些 Term,分别在哪页,可以理解 Term Index是一棵树,这棵树不会包含所有的 Term,它包含的是 Term 的一些前缀,通过 Term Index 可以快速地定位到 Term Dictionary 的某个 Offset,然后从这个位置再往后顺序查找。

在内存中用 FST 方式压缩 Term Index,FST 以字节的方式存储所有的 Term,这种压缩方式可以有效的缩减存储空间,使得 Term Index 足以放进内存,但这种方式也会导致查找时需要更多的 CPU 资源。对于存储在磁盘上的倒排表同样也采用了压缩技术减少存储所占用的空间。

分词(Analysis)

将文本切分为一系列单词的过程

例如文本:谷歌地图之父跳槽FaceBook

分词结果:谷歌\ 地图\之父\跳槽\FaceBook

倒排列表(PostingList)

倒排列表记录了出现过某个单词的所有文档的文档列表及单词在该文档中出现的位置信息,每条记录称为一个倒排项(Posting)。根据倒排列表,即可获知哪些文档包含某个单词。实际的倒排列表中并不只是存了文档ID这么简单,还有一些其它的信息,比如:词频(Term出现的次数)、偏移量(offset)等,如下图所示:

单词ID、单词和文档频率就不多说了,这里重点解释一下倒排列表:

DocID:单词出现的文档id

TF:单词在某个文档中出现的次数

POS:单词在文档中出现的位置

以单词“加盟”为例,其单词编号为6,文档频率为3,代表整个文档集合中有三个文档包含这个单词,对应的倒排列表为{(2;1;<4>),(3;1;<7>),(5;1;<5>)},含义是在文档2,3,5出现过这个单词,在每个文档的出现过1次,单词“加盟”在第一个文档的POS是4,即文档的第四个单词是“加盟”,其他的类似。

倒排文件(Inverted File)

所有单词的倒排列表往往顺序地存储在磁盘的某个文件里,这个文件即被称之为倒排文件,倒排文件是存储倒排索引的物理文件。

词典、单词、倒排文件和倒排列表概念之间的关系

一张图就能很好的说明这些概念的关系

相关文章:

一文读懂倒排序索引涉及的核心概念

基础概念相信对于第一次接触Elasticsearch的同学来说&#xff0c;最难理解的概念就是倒排序索引&#xff08;也叫反向索引&#xff09;&#xff0c;因为这个概念跟我们之前在传统关系型数据库中的索引概念是完全不同的&#xff01;在这里我就重点给大家介绍一下倒排序索引&…...

Java基础算法题

以创作之名致敬节日 胜固欣然&#xff0c;败亦可喜。 --苏轼 目录 练习1 : 优化代码 扩展 : CRTL Alt M 自动抽取方法 练习2: 方法一: 方法二: 方法三: Math : 顾名思义&#xff0c;Math类就是用来进行数学计算的&#xff0c;它提供了大量的静态方法来便于我们实…...

「SAP ABAP」你真的了解OPEN SQL的DML语句吗 (附超详细案例讲解)

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读&#xff0c;同时任汉硕云&#xff08;广东&#xff09;科技有限公司ABAP开发顾问。在学习工作中&#xff0c;我通常使用偏后端的开发语言A…...

数据结构3——线性表2:线性表的顺序结构

顺序结构的基本理解 定义&#xff1a; 把逻辑上相邻的数据元素存储在物理上相邻&#xff08;占用一片连续的存储单元&#xff0c;中间不能空出来&#xff09;的存储单元的存储结构 存储位置计算&#xff1a; LOC(a(i1))LOC(a(i))lLOC(a(i1))LOC(a(i))l LOC(a(i1))LOC(a(i))l L…...

VMware虚拟机搭建环境通用方法

目录一、前期准备1.下载并安装一个虚拟机软件二、开始创建虚拟机1.配置虚拟机硬件相关操作2.虚拟机网络相关操作三、开机配置相关内容0.开机遇到报错处理&#xff08;选看--开机没有报错请忽略&#xff09;1.开始配置2.开机之后配置3.使用xshell远程登录4.使用xshell配置虚拟机…...

2.Fully Convolutional Networks for Semantic Segmentation论文记录

欢迎访问个人网络日志&#x1f339;&#x1f339;知行空间&#x1f339;&#x1f339; 文章目录1.基础介绍2.分类网络转换成全卷积分割网络3.转置卷积进行上采样4.特征融合5.一个pytorch源码实现参考资料1.基础介绍 论文:Fully Convolutional Networks for Semantic Segmentati…...

深度解析Spring Boot自动装配原理

废话不多说了&#xff0c;直接来看源码。源码解析SpringBootApplication我们在使用idea创建好Spring Boot项目时&#xff0c;会发现在启动类上添加了SpringBootApplication注解&#xff0c;这个注解就是Spring Boot的核心所在。点击注解可以查看到到它的实现ementType.TYPE) Re…...

Redis性能分析相关-channel=[id: 0xbee27bd4, L:/127.0.0.1:63156

redis宕机...

Linux:环境变量

目录一、环境变量的理解&#xff08;1&#xff09;什么是环境变量&#xff1f;&#xff08;2&#xff09;Linux中的环境变量二、环境变量的使用&#xff08;1&#xff09;PATH环境变量&#xff08;2&#xff09;和变量相关的指令三、环境变量与普通变量的区别在平时使用电脑的时…...

Codeforces Round 703 (Div. 2)(A~D)

A. Shifting Stacks给出一个数组&#xff0c;每次可以将一个位置-1&#xff0c;右侧相邻位置1&#xff0c;判断是否可以经过若干次操作后使得数列严格递增。思路&#xff1a;对于每个位置&#xff0c;前缀和必须都大于该位置应该有的最少数字&#xff0c;即第一个位置最少是0&a…...

Django项目5——基于tensorflow serving部署深度模型——windows版本

1&#xff1a;安装docker for windows 可能需要安装WLS2&#xff0c;用于支持Linux系统&#xff0c;参照上面的教程安装 2&#xff1a;在Powershell下使用docker docker pull tensorflow/serving3&#xff1a;在Powershell下启动tensorflow serving docker run -p 8500:8500 …...

MySQL基础篇3

第一章 多表关系实战 1.1 实战1&#xff1a;省和市 方案1&#xff1a;多张表&#xff0c;一对多 方案2&#xff1a;一张表&#xff0c;自关联一对多 id1 name‘北京’ p_id null; id2 name‘昌平’ p_id1 id3 name‘大兴’ p_id1 id3 name‘上海’ p_idnull id4 name‘浦东’…...

携程 x TiDB丨应对全球业务海量数据增长,一栈式 HTAP 实现架构革新

随着新冠病毒疫情的缓解和控制&#xff0c;全球旅游业逐渐开始重新复苏。尤其在一些度假胜地&#xff0c;游客数量已经恢复到疫情前的水平。 携程作为全球领先的一站式旅行平台&#xff0c;旗下拥有携程旅行网、去哪儿网、Skyscanner 等品牌。携程旅行网向超过 9000 万会员提供…...

记一次Kafka warning排查过程

1、前因 在配合测试某个需求的时候&#xff0c;正好看到控制台打印了个报错&#xff0c;如下&#xff1a; 2023-03-06 17:05:58,565[325651ms][pool-28-thread-1][org.apache.kafka.common.utils.AppInfoParser][WARN] - Error registering AppInfo mbean javax.management.I…...

MySQL学习笔记(6.视图)

1. 视图作用 (1). 简化业务&#xff0c;将多个复杂条件&#xff0c;改为视图 (2). mysql对用户授权&#xff0c;只能控制表权限&#xff0c;通过视图可以控制用户字段权限。 (3). 可以避免基本表变更&#xff0c;影响业务。只需更改视图即可。 2. 视图&#xff08;创建&…...

java多线程与线程池-01多线程知识复习

多线程知识复习 文章目录 多线程知识复习第1章 多线程基础1.1.2 线程与进程的关系1.2 多线程启动1.2.1 线程标识1.2.2 Thread与Runnable1.2.3 run()与start()1.2.4 Thread源码分析1.3 线程状态1.3.1 NEW状态1.3.2 RUNNABLE状态1.3.3 BLOCKED状态1.3.4 WAITING状态1…...

Typescript - 将命名空间A导入另一个命名空间B作为B的子命名空间,并全局暴露命名空间B

前言 最近相统一管理 ts 中的类型声明&#xff0c;这就需要将各模块下的命名空间整合到全局的命名空间下&#xff0c;牵涉到从别的文件中引入命名空间并作为子命名空间在全局命名空间中统一暴露。 将命名空间A导入另一个命名空间B作为B的子命名空间 文件说明 assets.ts 文件中…...

Windows下实现Linux内核的Python开发(WSL2+Conda+Pycharm)

许多软件可以通过Python交互&#xff0c;但没有开发Windows版本&#xff0c;这个时候装双系统或虚拟机都很不方便&#xff0c;可以采取WSL2CondaPycharm的策略来进行基于Linux内核的Python开发。启动WSL2&#xff0c;安装Linux内核教程&#xff1a;旧版 WSL 的手动安装步骤 | M…...

新闻发布网站分析及适用场景

在当今数字时代&#xff0c;发布新闻的渠道已经不再局限于传统媒体&#xff0c;越来越多的企业、组织和个人开始使用互联网平台发布新闻稿&#xff0c;以提升品牌知名度和影响力。本文将介绍一些可以发布新闻的网站&#xff0c;并分析其特点和适用场景。一、新闻稿发布平台1.新…...

云原生时代顶流消息中间件Apache Pulsar部署实操之Pulsar IO与Pulsar SQL

文章目录Pulsar IO (Connector连接器)基础定义安装Pulsar和内置连接器连接Pulsar到Cassandra安装cassandra集群配置Cassandra接收器创建Cassandra Sink验证Cassandra Sink结果删除Cassandra Sink连接Pulsar到PostgreSQL安装PostgreSQL集群配置JDBC接收器创建JDBC Sink验证JDBC …...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...