深度学习笔记-2.自动梯度问题
通过反向传播进行自动求梯度
- 1-requires_grad问题
- 2-梯度
- 3- detach() 和 with torch.no_grad()
- 4- Tensor.data.requires_grad
PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播.
1-requires_grad问题
requires_grad=True
开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了),完成计算后,可以调用.backward()来完成所有梯度计算。默认 requires_grad = False
完成计算后,可以调用**.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad**属性中。
#x是直接创建的,所以它没有grad_fn, 而
x = torch.ones(2, 2, requires_grad=True)
print(x)#tensor([[1., 1.],[1., 1.]], requires_grad=True)
print(x.grad_fn)#None#y是通过一个加法操作创建的,所以它有一个为的grad_fn。
y = x + 2
print(y)#tensor([[3., 3.],[3., 3.]], grad_fn=<AddBackward>)
print(y.grad_fn)#<AddBackward object at 0x1100477b8>#打印是否有叶子节点
print(x.is_leaf, y.is_leaf) # True False
若开始没有设置requires_grad 属性可通过 .requires_grad_()来用in-place的方式改requires_grad属性
a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)#<SumBackward0 object at 0x118f50cc0>
2-梯度
标量:标量就是一个数字。标量也称为0维数组
向量:向量是一组标量组成的列表。向量也称为1维数组。
矩阵:矩阵是由一组向量组成的集合。矩阵也称为2维数组。
张量:张量是矩阵的推广,可以用来描述N维数据
注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor
out.backward() # 等价于 out.backward(torch.tensor(1.)) 反向转播#求导
x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)#tensor([[2., 4.],[6., 8.]], grad_fn=<ViewBackward>)
现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量。
v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)#tensor([2.0000, 0.2000, 0.0200, 0.0020]) x.grad是和x同形的张量
3- detach() 和 with torch.no_grad()
两种方式中断梯度追踪,无法进行梯度链式法则梯度传播
1-detach()
将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了
2-with torch.no_grad()
将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。
x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2
with torch.no_grad():y2 = x ** 3
y3 = y1 + y2print(x.requires_grad)#true
print(y1, y1.requires_grad) #tensor(1., grad_fn=<PowBackward0>) True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # tensor(2., grad_fn=<ThAddBackward>)Truey3.backward()#y2被包裹 所以y2有关的梯度是不会回传的 结果只是y1 对x的梯度
print(x.grad)#tensor(2.)#使用y2的传播会报错
#RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
4- Tensor.data.requires_grad
当你想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作。
x = torch.ones(1,requires_grad=True)print(x.data) # tensor([1.]) #还是一个tensor
print(x.data.requires_grad) #False #但是已经是独立于计算图之外y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播y.backward()#tensor([100.], requires_grad=True)
print(x) # 更改data的值也会影响tensor的值
print(x.grad)#tensor([2.])
相关文章:
深度学习笔记-2.自动梯度问题
通过反向传播进行自动求梯度1-requires_grad问题2-梯度3- detach() 和 with torch.no_grad()4- Tensor.data.requires_gradPyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播. 1-requires_grad问题 requires_gradTrue …...

一文读懂倒排序索引涉及的核心概念
基础概念相信对于第一次接触Elasticsearch的同学来说,最难理解的概念就是倒排序索引(也叫反向索引),因为这个概念跟我们之前在传统关系型数据库中的索引概念是完全不同的!在这里我就重点给大家介绍一下倒排序索引&…...

Java基础算法题
以创作之名致敬节日 胜固欣然,败亦可喜。 --苏轼 目录 练习1 : 优化代码 扩展 : CRTL Alt M 自动抽取方法 练习2: 方法一: 方法二: 方法三: Math : 顾名思义,Math类就是用来进行数学计算的,它提供了大量的静态方法来便于我们实…...

「SAP ABAP」你真的了解OPEN SQL的DML语句吗 (附超详细案例讲解)
💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后端的开发语言A…...

数据结构3——线性表2:线性表的顺序结构
顺序结构的基本理解 定义: 把逻辑上相邻的数据元素存储在物理上相邻(占用一片连续的存储单元,中间不能空出来)的存储单元的存储结构 存储位置计算: LOC(a(i1))LOC(a(i))lLOC(a(i1))LOC(a(i))l LOC(a(i1))LOC(a(i))l L…...

VMware虚拟机搭建环境通用方法
目录一、前期准备1.下载并安装一个虚拟机软件二、开始创建虚拟机1.配置虚拟机硬件相关操作2.虚拟机网络相关操作三、开机配置相关内容0.开机遇到报错处理(选看--开机没有报错请忽略)1.开始配置2.开机之后配置3.使用xshell远程登录4.使用xshell配置虚拟机…...

2.Fully Convolutional Networks for Semantic Segmentation论文记录
欢迎访问个人网络日志🌹🌹知行空间🌹🌹 文章目录1.基础介绍2.分类网络转换成全卷积分割网络3.转置卷积进行上采样4.特征融合5.一个pytorch源码实现参考资料1.基础介绍 论文:Fully Convolutional Networks for Semantic Segmentati…...

深度解析Spring Boot自动装配原理
废话不多说了,直接来看源码。源码解析SpringBootApplication我们在使用idea创建好Spring Boot项目时,会发现在启动类上添加了SpringBootApplication注解,这个注解就是Spring Boot的核心所在。点击注解可以查看到到它的实现ementType.TYPE) Re…...

Linux:环境变量
目录一、环境变量的理解(1)什么是环境变量?(2)Linux中的环境变量二、环境变量的使用(1)PATH环境变量(2)和变量相关的指令三、环境变量与普通变量的区别在平时使用电脑的时…...

Codeforces Round 703 (Div. 2)(A~D)
A. Shifting Stacks给出一个数组,每次可以将一个位置-1,右侧相邻位置1,判断是否可以经过若干次操作后使得数列严格递增。思路:对于每个位置,前缀和必须都大于该位置应该有的最少数字,即第一个位置最少是0&a…...
Django项目5——基于tensorflow serving部署深度模型——windows版本
1:安装docker for windows 可能需要安装WLS2,用于支持Linux系统,参照上面的教程安装 2:在Powershell下使用docker docker pull tensorflow/serving3:在Powershell下启动tensorflow serving docker run -p 8500:8500 …...

MySQL基础篇3
第一章 多表关系实战 1.1 实战1:省和市 方案1:多张表,一对多 方案2:一张表,自关联一对多 id1 name‘北京’ p_id null; id2 name‘昌平’ p_id1 id3 name‘大兴’ p_id1 id3 name‘上海’ p_idnull id4 name‘浦东’…...

携程 x TiDB丨应对全球业务海量数据增长,一栈式 HTAP 实现架构革新
随着新冠病毒疫情的缓解和控制,全球旅游业逐渐开始重新复苏。尤其在一些度假胜地,游客数量已经恢复到疫情前的水平。 携程作为全球领先的一站式旅行平台,旗下拥有携程旅行网、去哪儿网、Skyscanner 等品牌。携程旅行网向超过 9000 万会员提供…...
记一次Kafka warning排查过程
1、前因 在配合测试某个需求的时候,正好看到控制台打印了个报错,如下: 2023-03-06 17:05:58,565[325651ms][pool-28-thread-1][org.apache.kafka.common.utils.AppInfoParser][WARN] - Error registering AppInfo mbean javax.management.I…...
MySQL学习笔记(6.视图)
1. 视图作用 (1). 简化业务,将多个复杂条件,改为视图 (2). mysql对用户授权,只能控制表权限,通过视图可以控制用户字段权限。 (3). 可以避免基本表变更,影响业务。只需更改视图即可。 2. 视图(创建&…...
java多线程与线程池-01多线程知识复习
多线程知识复习 文章目录 多线程知识复习第1章 多线程基础1.1.2 线程与进程的关系1.2 多线程启动1.2.1 线程标识1.2.2 Thread与Runnable1.2.3 run()与start()1.2.4 Thread源码分析1.3 线程状态1.3.1 NEW状态1.3.2 RUNNABLE状态1.3.3 BLOCKED状态1.3.4 WAITING状态1…...
Typescript - 将命名空间A导入另一个命名空间B作为B的子命名空间,并全局暴露命名空间B
前言 最近相统一管理 ts 中的类型声明,这就需要将各模块下的命名空间整合到全局的命名空间下,牵涉到从别的文件中引入命名空间并作为子命名空间在全局命名空间中统一暴露。 将命名空间A导入另一个命名空间B作为B的子命名空间 文件说明 assets.ts 文件中…...

Windows下实现Linux内核的Python开发(WSL2+Conda+Pycharm)
许多软件可以通过Python交互,但没有开发Windows版本,这个时候装双系统或虚拟机都很不方便,可以采取WSL2CondaPycharm的策略来进行基于Linux内核的Python开发。启动WSL2,安装Linux内核教程:旧版 WSL 的手动安装步骤 | M…...

新闻发布网站分析及适用场景
在当今数字时代,发布新闻的渠道已经不再局限于传统媒体,越来越多的企业、组织和个人开始使用互联网平台发布新闻稿,以提升品牌知名度和影响力。本文将介绍一些可以发布新闻的网站,并分析其特点和适用场景。一、新闻稿发布平台1.新…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...