刷屏一天GPT-4o,发现GPT4用的都还不熟练?戳这儿
以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑
本次我们通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。
158。3333。2534。
【特色】:
1、GPT与学科知识融合:GPT深层应用一定是和本身研究的专业知识相融合;
2、精选案例驱动学习:以科研过程为线,结合大量的精选实例掌握GPT技术的实际效果;
3、实践技能培养:不仅仅是理论,更重视实践演练和项目操作,以提升研究工作效率。
4、资源与支持:内容中讲解多种辅助插件应用,建立助学群促进学员之间的交流;
开启大模型
1 开启大模型
1) 大模型的发展历程与最新功能
2) 大模型的强大功能与应用场景
3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)
4) 如何优雅使用大模型
案例1.1:开启不同平台的大模型
案例1.2:GPT不同版本的使用
案例1.3:大模型文件上传和处理
基于ChatGPT大模型提问框架
2 提问框架(提示词、指令)
1) 专业大模型提示词,助你小白变专家
2) 超实用的通用提示词和提问框架
3) GPT store(GPT商店产品)及高级提问技巧
案例2.1:设定角色与投喂规则
案例2.2:行业专家指令合集
案例2.3:角色扮演与不同角度提问
案例2.4:分步提问与上下文关联
案例2.5:经典提问框架练习,提升模型效率
基于ChatGPT大模型的论文助手
3 基于AI大模型的论文助手
案例3.1:大模型论文润色中英文指令大全
案例3.2:使用大模型进行论文润色
案例3.3:使用大模型对英文文献进行搜索
案例3.4:使用大模型对英文文献进行问答和辅助阅读
案例3.5:使用大模型提取英文文献关键信息
案例3.6:使用大模型对论文进行摘要重写
案例3.7:使用大模型取一个好的论文标题
案例3.8:使用大模型写论文框架和调整论文结构
案例3.9:使用大模型对论文进行翻译
案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见
案例3.11:使用大模型对论文进行降重
案例3.12:使用大模型查找研究热点
案例3.13:使用大模型对你的论文凝练成新闻和微信文案
案例3.14:使用大模型对拓展论文讨论
案例3.15:使用大模型辅助专著、教材、课件的撰写
基于ChatGPT大模型的数据清洗
4 基于ChatGPT的数据清洗
1) R语言和Python基础(勿需学会,能看懂即可)
2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)
案例4.1:使用大模型指令随机生成数据
案例4.2:使用大模型指令读取数据
案例4.3:使用大模型指令进行数据清洗
案例4.4:使用大模型指令对农业气象数据进行预处理
案例4.5:使用大模型指令对生态数据进行预处理
基于ChatGPT大模型的统计分析
5 基于AI大模型的统计分析
1) 统计假设检验
2) 统计学三大常用检验及其应用场景
3) 方差分析、相关分析、回归分析
案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验
案例5.2:使用大模型进行t检验、F检验和卡方检验
案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分
基于ChatGPT的经典统计模型
基于AI大模型的经典统计模型构建
案例6.1:基于AI辅助构建的混合线性模型在生态学中应用
案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图
案例6.3:基于AI辅助的生态环境数据结构方程模型构
基于ChatGPT的优化算法
基于AI大模型的频率派和贝叶斯派优化算法
案例7.1:最小二乘法优化模型参数优化
案例7.2:遗传算法、差分进化算法参数优化
案例7.3:贝叶斯定理和贝叶斯优化算法
案例7.4:蒙特拉罗马尔科夫链MCMC进行参数优化
基于ChatGPT大模型的机器学习
7 基于AI大模型的机器/深度学习
2) 线性代数基础、特征值和特征向量
3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)
4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优
5) 主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN
6) 支持向量机、决策树、随机森林、XGBoost、AdaBoost、LightGBM、高斯过程
7) 深度学习算法(神经网络、激活函数、交叉熵、优化器)
8) AI大模型的底层逻辑和算法结构(GPT1-GPT4)
9) 卷积神经网络、长短期记忆网络(LSTM)
案例8.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)
案例8.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)
案例8.3:使用大模型指令构建降维模型
案例8.4:使用大模型指令构建聚类模型
案例8.5:使用大模型指令构建卷积神经网络
案例8.6:使用大模型指令构建LSTM模型进行气象时序预测
ChatGPT的二次开发
9 基于AI大模型的二次开发
案例9.1:基于API构建自己的本地大模型
案例9.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成
案例9.3:ChatGPT Store构建方法
基于ChatGPT大模型的科研绘图
10基于AI大模型的科研绘图
1) 使用大模型进行数据可视化
案例10.1:大模型科研绘图指定全集
案例10.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图
案例10.3:使用大模型指令对图形进行修改
基于ChatGPT大模型的GIS应用
11 基于AI大模型的GIS应用
1) R语言和Python空间数据处理主要方法
2) 基于AI大模型训练降尺度模型
3) 基于AI大模型处理矢量、栅格数据
4) 基于AI大模型处理多时相netCDF4数据
案例11.1:使用大模型绘制全球地图
案例11.2:使用大模型处理NASA气象多时相NC数据
案例11.3:使用大模型绘制全球植被类型分布图
案例11.4:使用大模型栅格数据并绘制全球植被生物量图
案例11.5:使用大模型处理遥感数据并进行时间序列分析
案例11.6:使用不同插值方法对气象数据进行插值
案例11.7:使用大模型进行空间聚类分析
案例11.8:使用大模型构建机器学习进行空间预测
基于ChatGPT大模型的项目基金助手
12 基于AI大模型的项目基金助手
1) 基金申请讲解
2) 基因申请助手
案例12.1:使用大模型进行项目选题和命题
案例12.2:使用大模型进行项目书写作和语言润色
案例12.3:使用大模型进行项目书概念图绘制
基于大模型的AI绘图
12基于大模型的AI绘图
GPT DALL.E、Midjourney等AI大模型生成图片讲解
1) AI画图指令套路和参数设定
案例12.1:使用大模型进行图像识别
案例12.2:使用大模型生成图像指令合集
案例12.3:使用大模型指令生成概念图
案例12.4:使用大模型指令生成地球氮循环概念图
案例12.5:使用大模型指令生成土壤概念图
案例12.6:使用大模型指令生成病毒、植物、动物细胞结构图
案例12.7:使用大模型指令生成图片素材,从此不再缺图片素材
相关文章:

刷屏一天GPT-4o,发现GPT4用的都还不熟练?戳这儿
以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…...

力扣HOT100 - 139. 单词拆分
解题思路: 动态规划 class Solution {public boolean wordBreak(String s, List<String> wordDict) {Set<String> wordDictSet new HashSet(wordDict);boolean[] dp new boolean[s.length() 1];dp[0] true;for (int i 1; i < s.length(); i) {…...
rush 功能特性梳理
Rush 可以让 JavaScript 开发者更轻松地同时构建、发布多个 NPM 包,即将多个包或项目放到一个大仓库下管理。 仅需一次 NPM 安装 仅需一步,Rush 便可以将你项目的所有依赖安装到一个公共文件夹下,该文件夹并不像 “package.json” 一样位于项…...

算法分析与设计复习__递归方程与分治
总结自:【算法设计与分析】期末考试突击课_哔哩哔哩_bilibili 1.递归,递归方程 1.1递归条件: 1.一个问题的解可以分解为几个子问题的解; 2.这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样; 3.存在…...
apk-parse包信息解析
最近公司做项目,需要解析apk包的基本信息,上网找了好多资料,最终决定使用apk-parse。 .yml文件 引入jar包 <dependency> <groupId>net.dongliu</groupId> <artifactId>apk-parser</artifactId> <version&…...

AI绘画进阶工具ComfyUI 傻瓜整合包安装教程!模型共享,一键安装!
哈喽大家好,今天给大家分享一下AI绘画工具Stable Diffusion的另一种UI界面,常见的有: 窗口式界面的WebUI 节点式工作流的ComfyUI ComfyUI更加进阶一些,是一个节点式工作流的AI绘画界面,它高度可定制、自定义编辑Ai生…...

无人机摄影测量数据处理、三维建模及在土方量计算
原文链接:无人机摄影测量数据处理、三维建模及在土方量计算https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247603776&idx2&snd96440e116900a46a71c45ff77316896&chksmfa8217a7cdf59eb15da39dd6366378b98ca39b9c836b76a473ff292b67ee37a6ff6…...
大模型平台后端开发(xiaomi)
文章目录 算法题 算法题 1 三数之和 (注意去重的边界条件,过几天再刷几次) 2 长度最小的子数组 (代码随想录题目,滑动窗口) 3 用链表实现栈 package mainimport ("errors""fmt" )// Node 定义链表节点 type…...

性能测试工具—jmeter的基础使用
1.Jmeter三个重要组件 1.1线程组的介绍: 特点: 模拟用户,支持多用户操作多个线程组可以串行执行,也可以并行执行 线程组的分类: setup线程组:前置处理,初始化普通线程组:编写…...
前端 JS 经典:CommonJs 规范
1. Node 环境介绍 CommonJs 简称 CMJ,CMJ 的模块标准,必须在 node 的环境中才支持。在浏览器中用,是不行的。 查看电脑是否安装 node,通过打开终端,运行 node -v 查看是否返回 node 版本。返回则已安装。 CMJ 在 no…...

三分钟速览量化交易系统:揭秘QMT与Ptrade(内附免费提供渠道)
在当今金融市场的快速发展中,量化交易系统以其独特的优势,逐渐成为投资者们追求稳定收益的重要工具。其中,QMT和Ptrade作为两大知名的量化交易平台,受到了广泛关注。本文将带您在三分钟内快速了解量化交易系统,并深入揭…...
处理QTcpSocket接收到数据的槽函数
这段代码是一个典型的用于处理QTcpSocket接收到数据的槽函数 onReadyRead()。它尝试从发出信号的QTcpSocket读取数据,并将这些数据添加到一个成员变量 recvList(假设这是一个 QList<QString> 类型)。整体上,这段代码逻辑是合…...

回归的无分布预测推理
摘要 我们利用保形推理,开发了回归中无分布预测推理的一般框架。所提出的方法允许使用回归函数的任何估计量构建响应变量的预测带。所得的预测带在标准假设下保留了原始估计量的一致性,同时保证了有限样本边际覆盖,即使这些假设不成立。我们…...
有限域中的一些概念
一、单位元: 在自然数中,任意数加上0等于本身,0则为加法的单位元,任意数乘以1等于本身,1则为乘法单位元。 有限域中单位元用e表示,即乘法,加法的单位元都用e表示,不过这两者的e不一样…...

使用css的box-reflect属性制作倒影效果
box-reflect 是一个在 CSS 中创建元素倒影效果的非标准属性。尽管它在过去的一些 WebKit 浏览器中(如旧版的 Safari 和 Chrome)得到了支持,但由于它并未成为 CSS 标准的一部分,因此在现代浏览器中的兼容性较差。以下是对 box-refl…...

ChatGPT 4o 使用案例之一
2024年GPT迎来重大更新,OpenAI发布GPT-4o GPT-4o(“o”代表“全能”) 它可以接受任意组合的文本、音频和图像作为输入,并生成任意组合的文本、音频和图像输出。它可以在 232 毫秒内响应音频输入,平均为 320 毫秒&…...

【免费Web系列】大家好 ,今天是Web课程的第一天点赞收藏关注,持续更新作品 !
开干,开干!!! 1. 前端开发介绍 我们介绍Web网站工作流程的时候提到,前端开发,主要的职责就是将数据以好看的样式呈现出来。说白了,就是开发网页程序,如下图所示: 那在讲解web前端开发之前,我们先需要对we…...

C++|树形关联式容器(set、map、multiset、multimap)介绍使用
目录 一、关联式容器介绍 1.1概念 1.2键值对 1.3树形结构的关联式容器 1.3.1pair模板介绍 1.3.2make_pair的介绍 二、set的介绍和使用 2.1set介绍 2.2set使用 2.2.1构造 2.2.2容量 2.2.3修改 三、map的介绍和使用 3.1map介绍 3.2map使用 3.2.1构造 3.2.2容量 …...
springboot整合s3,用ImageIO进行图片格式转换
上次用laravel进行了一些s3得整合,可以看出来其实蛮简单得。 先导包 <dependency><groupId>software.amazon.awssdk</groupId><artifactId>s3</artifactId></dependency> 然后在配置类中写bean private static final String …...

Windows 10无法远程桌面连接:原因及解决方案
在信息技术日益发展的今天,远程桌面连接已成为企业日常运维、技术支持乃至个人用户远程办公的必备工具。然而,有时我们可能会遇到Windows 10无法远程桌面连接的问题,这无疑会给我们的工作和生活带来诸多不便。 原因分析 1、远程访问未启用&a…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...