当前位置: 首页 > news >正文

有限域中的一些概念

一、单位元:
在自然数中,任意数加上0等于本身,0则为加法的单位元,任意数乘以1等于本身,1则为乘法单位元。
有限域中单位元用e表示,即乘法,加法的单位元都用e表示,不过这两者的e不一样。

二、逆元
在有理数中,如果两个数乘积为1,这两个数互为乘法逆元。如果两个数相加等于0,互为加法逆元,
有限域中,如果a+b=e,则a和b互为加法逆元,如果axb =e,则a和b互为乘法逆元。

三、域成立的条件
必要条件:一个集合有加法单位元,乘法单位元,以及每一个元素都对应有加法逆元,和乘法逆元,(有限域并不要求0有乘法逆元)

四、有限多项式GF(2^n)的运算规则:
1、多项式系数只能是0或者1。
2、多项式在进行同类项合并时,系数加减需要按照模p操作,
3、对于GF(2)域,加法等效于异或操作。且减法,或者负系数等于直接取反,即x-x与x+x等效。而-x与x等效。

五、素多项式概念意义
1、概念:
在有限域内,不能被再次分解的多项式,即不能被表示为其他任意两个多项式的乘积。只能被1和自身整除。 类似于素数的概念

2、意义:
素多项式的存在,可以将有限域内的任意多项式进行一一对应和一一映射。
不同的素多项式有不同的映射规则。
能够有效的降幂

六、在有限域内,本原多项式与任意多项式相承,结果为0

相关文章:

有限域中的一些概念

一、单位元: 在自然数中,任意数加上0等于本身,0则为加法的单位元,任意数乘以1等于本身,1则为乘法单位元。 有限域中单位元用e表示,即乘法,加法的单位元都用e表示,不过这两者的e不一样…...

使用css的box-reflect属性制作倒影效果

box-reflect 是一个在 CSS 中创建元素倒影效果的非标准属性。尽管它在过去的一些 WebKit 浏览器中(如旧版的 Safari 和 Chrome)得到了支持,但由于它并未成为 CSS 标准的一部分,因此在现代浏览器中的兼容性较差。以下是对 box-refl…...

ChatGPT 4o 使用案例之一

2024年GPT迎来重大更新,OpenAI发布GPT-4o GPT-4o(“o”代表“全能”) 它可以接受任意组合的文本、音频和图像作为输入,并生成任意组合的文本、音频和图像输出。它可以在 232 毫秒内响应音频输入,平均为 320 毫秒&…...

【免费Web系列】大家好 ,今天是Web课程的第一天点赞收藏关注,持续更新作品 !

开干,开干!!! 1. 前端开发介绍 我们介绍Web网站工作流程的时候提到,前端开发,主要的职责就是将数据以好看的样式呈现出来。说白了,就是开发网页程序,如下图所示: 那在讲解web前端开发之前,我们先需要对we…...

C++|树形关联式容器(set、map、multiset、multimap)介绍使用

目录 一、关联式容器介绍 1.1概念 1.2键值对 1.3树形结构的关联式容器 1.3.1pair模板介绍 1.3.2make_pair的介绍 二、set的介绍和使用 2.1set介绍 2.2set使用 2.2.1构造 2.2.2容量 2.2.3修改 三、map的介绍和使用 3.1map介绍 3.2map使用 3.2.1构造 3.2.2容量 …...

springboot整合s3,用ImageIO进行图片格式转换

上次用laravel进行了一些s3得整合&#xff0c;可以看出来其实蛮简单得。 先导包 <dependency><groupId>software.amazon.awssdk</groupId><artifactId>s3</artifactId></dependency> 然后在配置类中写bean private static final String …...

Windows 10无法远程桌面连接:原因及解决方案

在信息技术日益发展的今天&#xff0c;远程桌面连接已成为企业日常运维、技术支持乃至个人用户远程办公的必备工具。然而&#xff0c;有时我们可能会遇到Windows 10无法远程桌面连接的问题&#xff0c;这无疑会给我们的工作和生活带来诸多不便。 原因分析 1、远程访问未启用&a…...

图神经网络实战(10)——归纳学习

图神经网络实战&#xff08;10&#xff09;——归纳学习 0. 前言1. 转导学习与归纳学习2. 蛋白质相互作用数据集3. 构建 GraphSAGE 模型实现归纳学习小结系列链接 0. 前言 归纳学习 (Inductive learning) 通过基于已观测训练数据&#xff0c;建立一个通用模型&#xff0c;使模…...

Python——IO编程

IO在计算机中指Input/Output&#xff0c;也就是输入和输出。由于程序和运行时数据是在内存中驻留&#xff0c;由CPU这个超快的计算核心来执行&#xff0c;涉及到数据交换的地方&#xff0c;通常是磁盘、网络等&#xff0c;就需要IO接口。 比如你打开浏览器&#xff0c;访问新浪…...

什么是网络端口?为什么会有高危端口?

一、什么是网络端口&#xff1f; 网络技术中的端口默认指的是TCP/IP协议中的服务端口&#xff0c;一共有0-65535个端口&#xff0c;比如我们最常见的端口是80端口默认访问网站的端口就是80&#xff0c;你直接在浏览器打开&#xff0c;会发现浏览器默认把80去掉&#xff0c;就是…...

CleanMyMac X v4.14.6中文破解版,让您的电脑像新的一样

小编给您带来CleanMyMac X v4.14.6中文破解版&#xff0c;CleanMyMac X破解版是应用在MacOS上的一款Mac系统清理优化工具&#xff0c;使用cleanmymac x 中文破解版只需两个简单步骤就可以把系统里那些乱七八糟的无用文件统统清理掉&#xff0c;节省宝贵的磁盘空间。 CleanMyMa…...

LeetCode 235. 二叉搜索树的最近公共祖先

LeetCode 235. 二叉搜索树的最近公共祖先 1、题目 题目链接&#xff1a;235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表…...

基于ASN.1的RSA算法公私钥存储格式解读

1.概述 RFC5958主要定义非对称密钥的封装语法&#xff0c;RFC5958用于替代RFC5208。非对称算法会涉及到1对公私钥&#xff0c;例如按照RSA算法&#xff0c;公钥是n和e&#xff0c;私钥是d和n。当需要将公私钥保存到文件时&#xff0c;需按照一定的格式保存。本文主要定义公私钥…...

RS2227XN功能和参数介绍及PDF资料

RS2227XN是一款模拟开关/多路复用器 品牌: RUNIC(润石) 封装: MSOP-10 描述: USB2.0高速模拟开关 开关电路: 双刀双掷(DPDT) 通道数: 2 工作电压: 1.8V~5.5V 导通电阻(RonVCC): 10Ω 功能&#xff1a;模拟开关/多路复用器 USB2.0高速模拟开关 工作电压范围&#xff1a;1.8V ~ 5…...

机器人非线性阻抗控制系统

机器人非线性控制系统本质上是一个复杂的控制系统&#xff0c;其状态变量和输出变量相对于输入变量的运动特性不能用线性关系来描述。这种系统的形成基于两类原因&#xff1a;一是被控系统中包含有不能忽略的非线性因素&#xff0c;二是为提高控制性能或简化控制系统结构而人为…...

pandas style添加表格边框,或是只添加下边框等自定义边框样式设置

添加表格边框 可以使用如下程序添加表格&#xff1a; import dataframe_image as dfi import pandas as pd import numpy as npdf pd.DataFrame(np.random.random(size(10, 5))) df_style df.style.set_properties(**{text-align: center,border-color: black,border-width…...

OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL

市面上关于终端&#xff08;手机&#xff09;操作系统在 3GPP 协议开发的内容太少了&#xff0c;即使 Android 相关的学习文档都很少&#xff0c;Android 协议开发书籍我是没有见过的。可能是市场需求的缘故吧&#xff0c;现在市场上还是前后端软件开发从业人员最多&#xff0c…...

windows部署腾讯tmagic-editor02-Runtime

创建editor项目 将上一教程中的hello-world复制过来&#xff0c;改名hello-editor 创建runtime项目 和hello-editor同级 pnpm create vite删除src/components/HelloWorld.vue 按钮需要用的ts types依赖 pnpm add tmagic/schema tmagic/stage实现runtime 将hello-editor中…...

“分块”算法的基本要素及 build() 函数的构建细节

【“分块”算法知识点】 ● 分块是用线段树的分区思想改良的暴力法。代码比线段树简单。效率比普通暴力法高。分块适合求解 m=n=10^5 规模的问题,或 m*sqrt(n)≈10^7 的问题。其中,n 为元素个数,m 为操作次数。 ● “分块”算法的基本要素 (1)块的大小用 block 表示。通常…...

畅捷通TPlus keyEdit.aspx、KeyInfoList.aspx SQL注入漏洞复现

前言 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用。 一、产…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

AWS vs 阿里云:功能、服务与性能对比指南

在云计算领域&#xff0c;Amazon Web Services (AWS) 和阿里云 (Alibaba Cloud) 是全球领先的提供商&#xff0c;各自在功能范围、服务生态系统、性能表现和适用场景上具有独特优势。基于提供的引用[1]-[5]&#xff0c;我将从功能、服务和性能三个方面进行结构化对比分析&#…...