当前位置: 首页 > news >正文

Python小白的机器学习入门指南

Python小白的机器学习入门指南

大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。

数据集介绍

我们将使用一个简单的鸢尾花数据集(Iris Dataset)。这个数据集包含150个样本,每个样本有4个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),以及目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。

环境准备

在开始之前,请确保你已经安装了以下库:
```bash
pip install numpy pandas scikit-learn
```

1. 导入库

首先,我们需要导入一些常用的Python库:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
```
示例:
```python
import numpy as np
```
NumPy是一个强大的科学计算库,用于处理数组。

2. 加载数据集

使用Scikit-learn加载Iris数据集:
```python
iris = load_iris()
data = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
                    columns= iris['feature_names'] + ['target'])
```
示例:
```python
iris = load_iris()
```
加载Iris数据集。

3. 数据预览

查看数据集的前5行:
```python
print(data.head())
```
示例:
```python
print(data.head())
```
打印数据集的前5行。

4. 数据处理

将特征和目标变量分开:
```python
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
```
示例:
```python
X = data.iloc[:, :-1]
```
提取特征。

5. 数据集划分

将数据集划分为训练集和测试集:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
示例:
```python
from sklearn.model_selection import train_test_split
```
导入数据集划分函数。

6. 训练模型

使用K近邻(KNN)算法训练模型:
```python
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
```
示例:
```python
knn = KNeighborsClassifier(n_neighbors=3)
```
创建KNN分类器。

7. 模型预测

使用训练好的模型进行预测:
```python
y_pred = knn.predict(X_test)
```
示例:
```python
y_pred = knn.predict(X_test)
```
对测试集进行预测。

8. 模型评估

评估模型的准确性:
```python
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
```
示例:
```python
print(accuracy_score(y_test, y_pred))
```
打印模型的准确率。

总结

以上就是使用Python进行机器学习的一些基本步骤和命令。希望这篇文章能够帮助Python小白们快速入门机器学习。如果你有任何问题,欢迎在评论区留言!

记得关注我们的公众号,获取更多有趣的Python和机器学习内容哦!

祝学习愉快!

 

每个命令举一个例子吧,最终写好的公众号以markdown格式给我,方便我复制
ChatGPT
markdown
复制代码
# Python小白的机器学习入门指南大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。## 数据集介绍我们将使用一个简单的鸢尾花数据集(Iris Dataset)。这个数据集包含150个样本,每个样本有4个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),以及目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。## 环境准备在开始之前,请确保你已经安装了以下库:```bash
pip install numpy pandas scikit-learn
1. 导入库
首先,我们需要导入一些常用的Python库:python
复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
示例:python
复制代码
import numpy as np
NumPy是一个强大的科学计算库,用于处理数组。2. 加载数据集
使用Scikit-learn加载Iris数据集:python
复制代码
iris = load_iris()
data = pd.DataFrame(data= np.c_[iris['data'], iris['target']],columns= iris['feature_names'] + ['target'])
示例:python
复制代码
iris = load_iris()
加载Iris数据集。3. 数据预览
查看数据集的前5行:python
复制代码
print(data.head())
示例:python
复制代码
print(data.head())
打印数据集的前5行。4. 数据处理
将特征和目标变量分开:python
复制代码
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
示例:python
复制代码
X = data.iloc[:, :-1]
提取特征。5. 数据集划分
将数据集划分为训练集和测试集:python
复制代码
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
示例:python
复制代码
from sklearn.model_selection import train_test_split
导入数据集划分函数。6. 训练模型
使用K近邻(KNN)算法训练模型:python
复制代码
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
示例:python
复制代码
knn = KNeighborsClassifier(n_neighbors=3)
创建KNN分类器。7. 模型预测
使用训练好的模型进行预测:python
复制代码
y_pred = knn.predict(X_test)
示例:python
复制代码
y_pred = knn.predict(X_test)
对测试集进行预测。8. 模型评估
评估模型的准确性:python
复制代码
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
示例:python
复制代码
print(accuracy_score(y_test, y_pred))
打印模型的准确率。总结
以上就是使用Python进行机器学习的一些基本步骤和命令。希望这篇文章能够帮助Python小白们快速入门机器学习。如果你有任何问题,欢迎在评论区留言!记得关注我们的公众号,获取更多有趣的Python和机器学习内容哦!祝学习愉快!

相关文章:

Python小白的机器学习入门指南

Python小白的机器学习入门指南 大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。 数据集介绍 我们将使用一个简单的鸢尾花数…...

学校上课,是耽误我学习了。。

>>上一篇(文科生在三本院校,读计算机专业) 2015年9月,我入学了。 我期待的大学生活是多姿多彩的,我会参加各种社团,参与各种有意思的活动。 但我是个社恐,有过尝试,但还是难…...

OpenFeign高级用法:缓存、QueryMap、MatrixVariable、CollectionFormat优雅地远程调用

码到三十五 : 个人主页 微服务架构中,服务之间的通信变得尤为关键。OpenFeign,一个声明式的Web服务客户端,使得REST API的调用变得更加简单和优雅。OpenFeign集成了Ribbon和Hystrix,具有负载均衡和容错的能力&#xff…...

python基础之函数

目录 1.函数相关术语 2.函数类型分类 3.栈 4.位置参数和关键字参数 5.默认参数 6.局部变量和全局变量 7.返回多个值 8.怀孕函数 9.匿名函数 10.可传递任意个数实参的函数 11.函数地址与函数接口 12.内置函数修改与函数包装 1.函数相关术语 函数的基本概念有函数头…...

深入理解C#中的IO操作 - FileStream流详解与示例

文章目录 一、FileStream类的介绍二、文件读取和写入2.1 文件读取(FileStream.Read)2.2 文件写入(FileStream.Write) 三、文件复制、移动和目录操作3.1 文件复制(FileStream.Copy)3.2 文件移动(…...

信息泄露--注意点点

目录 明确目标: 信息泄露: 版本软件 敏感文件 配置错误 url基于文件: url基于路由: 状态码: http头信息泄露 报错信息泄露 页面信息泄露 robots.txt敏感信息泄露 .get文件泄露 --判断: 搜索引擎收录泄露 BP: 爆破: 明确目标: 失能 读取 写入 执行 信息泄…...

位运算符

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 位运算符是把数字看作二进制数来进行计算的,因此,需要先将要执行运算的数据转换为二进制,然后才能进行执行运算。…...

云上聚智——移动云云服务器进行后端的搭建及部署

什么是移动云 移动云是指将移动设备和云计算技术相结合,为移动应用提供强大的计算和存储能力的服务模式。传统的移动应用通常在本地设备上进行计算和存储,而移动云将这些任务转移到云端进行处理。通过移动云,移动设备可以利用云端的高性能计算…...

C语言程序的编译

目录 一、预处理(预编译) 二、编译 三、汇编 四,链接 在前面讲到了宏的定义,那么宏在编译时候是如何发生替换的?接下来做一下详细的介绍C语言程序的编译过程主要包括以下几个步骤:预处理、编译、汇编和…...

滴滴三面 | Go后端研发

狠狠的被鞭打了快两个小时… 注意我写的题解不一定是对的,如果你认为有其他答案欢迎评论区留言 bg:23届 211本 社招 1. 自我介绍 2. 讲一个项目的点,因为用到了中间件平台的数据同步,于是开始鞭打数据同步。。 3. 如果同步的时候…...

深度学习之基于Yolov3的行人重识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 行人重识别(Person Re-Identification,简称ReID)是计算机视觉领域…...

防火墙最新技术汇总

防火墙技术持续发展,以应对日益复杂的网络安全威胁。以下是防火墙领域的一些最新技术汇总: 下一代防火墙(NGFW):NGFW结合了传统防火墙的分组过滤和状态检测功能,还集成了深度包检测(DPI&#xf…...

PikaUnsafe upfileupload

1.client check 客户端检测,前端js检测,禁用js和修改后缀名即可。 php格式不能上传,我们修改后缀上传。 蚁剑成功连接。 2.MIME type 这个就是 content-type 规定上传类型,上面的方法也能成功,也可以修改 conten-ty…...

git拉取项目前需要操作哪些?

1.输入 $ ssh-keygen -t rsa -C "秘钥说明" 按enter键 2.出现 ssh/id_rsa:(输入也可以不输入也可以) 然后按enter键 3.出现empty for no passphrase:(输入也可以不输入也可以) 然后按enter键 4.出现same passphrase again: (输入也可以不输入也…...

报名开启!2024 开源之夏丨Serverless Devs 课题已上线!

Serverless 是近年来云计算领域热门话题,凭借极致弹性、按量付费、降本提效等众多优势受到很多人的追捧,各云厂商也在不断地布局 Serverless 领域。 Serverless Devs 是一个由阿里巴巴发起的 Serverless 领域的开源项目,其目的是要和开发者们…...

DataBinding viewBinding(视图绑定与数据双向绑定)简单案例 (kotlin)

先上效果: 4个view的文字都是通过DataBinding填充的。交互事件:点击图片,切换图片 创建项目(android Studio 2023.3.1) Build.gradle(:app) 引入依赖库(完整源码) buildFeatures { vie…...

TensorFlow基于anaconda3快速构建

基于python构建太累 Installing Packages - Python Packaging User Guide 使用 pip 安装 TensorFlow 有兴趣自己学,我放弃了 -------------------------------------------------------- 下面基于anaconda 1、下载 Index of /anaconda/archive/ | 清华大学开…...

力扣72-编辑距离

题目链接 记忆化搜索: 解题关键:每次仅考虑两字符串word1、word2分别从0 - i修改成0-j下标的完全匹配(下标表示) 临界条件:当 i 或 j 小于0时,表示该字符串为空,编辑距离确定为 y1 或 x1 int dp[501][501…...

K8S 删除pod的正确步骤

在日常的k8s运维过程中&#xff0c;避免不了会对某些pod进行剔除&#xff0c;那么如何才能正确的剔除不需要的pod呢&#xff1f; 首先&#xff0c;需要查出想要删除的pod # 可通过任意方式进行查询 kubectl get pods -A |grep <podname> kubectl get pods -n <names…...

羊大师分析,羊奶健康生活的营养源泉

羊大师分析&#xff0c;羊奶健康生活的营养源泉 羊奶&#xff0c;作为一种古老的饮品&#xff0c;近年来因其独特的营养价值和健康益处而备受关注。今天&#xff0c;羊大师就来探讨一下羊奶与健康之间的紧密联系。 羊奶富含蛋白质、脂肪、维生素和矿物质等多种营养成分。羊奶…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...