Python小白的机器学习入门指南
Python小白的机器学习入门指南
大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。
数据集介绍
我们将使用一个简单的鸢尾花数据集(Iris Dataset)。这个数据集包含150个样本,每个样本有4个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),以及目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。
环境准备
在开始之前,请确保你已经安装了以下库:
```bash
pip install numpy pandas scikit-learn
```
1. 导入库
首先,我们需要导入一些常用的Python库:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
```
示例:
```python
import numpy as np
```
NumPy是一个强大的科学计算库,用于处理数组。
2. 加载数据集
使用Scikit-learn加载Iris数据集:
```python
iris = load_iris()
data = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
```
示例:
```python
iris = load_iris()
```
加载Iris数据集。
3. 数据预览
查看数据集的前5行:
```python
print(data.head())
```
示例:
```python
print(data.head())
```
打印数据集的前5行。
4. 数据处理
将特征和目标变量分开:
```python
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
```
示例:
```python
X = data.iloc[:, :-1]
```
提取特征。
5. 数据集划分
将数据集划分为训练集和测试集:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
示例:
```python
from sklearn.model_selection import train_test_split
```
导入数据集划分函数。
6. 训练模型
使用K近邻(KNN)算法训练模型:
```python
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
```
示例:
```python
knn = KNeighborsClassifier(n_neighbors=3)
```
创建KNN分类器。
7. 模型预测
使用训练好的模型进行预测:
```python
y_pred = knn.predict(X_test)
```
示例:
```python
y_pred = knn.predict(X_test)
```
对测试集进行预测。
8. 模型评估
评估模型的准确性:
```python
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
```
示例:
```python
print(accuracy_score(y_test, y_pred))
```
打印模型的准确率。
总结
以上就是使用Python进行机器学习的一些基本步骤和命令。希望这篇文章能够帮助Python小白们快速入门机器学习。如果你有任何问题,欢迎在评论区留言!
记得关注我们的公众号,获取更多有趣的Python和机器学习内容哦!
祝学习愉快!
每个命令举一个例子吧,最终写好的公众号以markdown格式给我,方便我复制
ChatGPT
markdown
复制代码
# Python小白的机器学习入门指南大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。## 数据集介绍我们将使用一个简单的鸢尾花数据集(Iris Dataset)。这个数据集包含150个样本,每个样本有4个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度),以及目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。## 环境准备在开始之前,请确保你已经安装了以下库:```bash
pip install numpy pandas scikit-learn
1. 导入库
首先,我们需要导入一些常用的Python库:python
复制代码
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
示例:python
复制代码
import numpy as np
NumPy是一个强大的科学计算库,用于处理数组。2. 加载数据集
使用Scikit-learn加载Iris数据集:python
复制代码
iris = load_iris()
data = pd.DataFrame(data= np.c_[iris['data'], iris['target']],columns= iris['feature_names'] + ['target'])
示例:python
复制代码
iris = load_iris()
加载Iris数据集。3. 数据预览
查看数据集的前5行:python
复制代码
print(data.head())
示例:python
复制代码
print(data.head())
打印数据集的前5行。4. 数据处理
将特征和目标变量分开:python
复制代码
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
示例:python
复制代码
X = data.iloc[:, :-1]
提取特征。5. 数据集划分
将数据集划分为训练集和测试集:python
复制代码
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
示例:python
复制代码
from sklearn.model_selection import train_test_split
导入数据集划分函数。6. 训练模型
使用K近邻(KNN)算法训练模型:python
复制代码
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
示例:python
复制代码
knn = KNeighborsClassifier(n_neighbors=3)
创建KNN分类器。7. 模型预测
使用训练好的模型进行预测:python
复制代码
y_pred = knn.predict(X_test)
示例:python
复制代码
y_pred = knn.predict(X_test)
对测试集进行预测。8. 模型评估
评估模型的准确性:python
复制代码
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
示例:python
复制代码
print(accuracy_score(y_test, y_pred))
打印模型的准确率。总结
以上就是使用Python进行机器学习的一些基本步骤和命令。希望这篇文章能够帮助Python小白们快速入门机器学习。如果你有任何问题,欢迎在评论区留言!记得关注我们的公众号,获取更多有趣的Python和机器学习内容哦!祝学习愉快!
相关文章:
Python小白的机器学习入门指南
Python小白的机器学习入门指南 大家好!今天我们来聊一聊如何使用Python进行机器学习。本文将为大家介绍一些基本的Python命令,并结合一个简单的数据集进行实例讲解,希望能帮助你快速入门机器学习。 数据集介绍 我们将使用一个简单的鸢尾花数…...
学校上课,是耽误我学习了。。
>>上一篇(文科生在三本院校,读计算机专业) 2015年9月,我入学了。 我期待的大学生活是多姿多彩的,我会参加各种社团,参与各种有意思的活动。 但我是个社恐,有过尝试,但还是难…...
OpenFeign高级用法:缓存、QueryMap、MatrixVariable、CollectionFormat优雅地远程调用
码到三十五 : 个人主页 微服务架构中,服务之间的通信变得尤为关键。OpenFeign,一个声明式的Web服务客户端,使得REST API的调用变得更加简单和优雅。OpenFeign集成了Ribbon和Hystrix,具有负载均衡和容错的能力ÿ…...
python基础之函数
目录 1.函数相关术语 2.函数类型分类 3.栈 4.位置参数和关键字参数 5.默认参数 6.局部变量和全局变量 7.返回多个值 8.怀孕函数 9.匿名函数 10.可传递任意个数实参的函数 11.函数地址与函数接口 12.内置函数修改与函数包装 1.函数相关术语 函数的基本概念有函数头…...
深入理解C#中的IO操作 - FileStream流详解与示例
文章目录 一、FileStream类的介绍二、文件读取和写入2.1 文件读取(FileStream.Read)2.2 文件写入(FileStream.Write) 三、文件复制、移动和目录操作3.1 文件复制(FileStream.Copy)3.2 文件移动(…...
信息泄露--注意点点
目录 明确目标: 信息泄露: 版本软件 敏感文件 配置错误 url基于文件: url基于路由: 状态码: http头信息泄露 报错信息泄露 页面信息泄露 robots.txt敏感信息泄露 .get文件泄露 --判断: 搜索引擎收录泄露 BP: 爆破: 明确目标: 失能 读取 写入 执行 信息泄…...
位运算符
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 位运算符是把数字看作二进制数来进行计算的,因此,需要先将要执行运算的数据转换为二进制,然后才能进行执行运算。…...
云上聚智——移动云云服务器进行后端的搭建及部署
什么是移动云 移动云是指将移动设备和云计算技术相结合,为移动应用提供强大的计算和存储能力的服务模式。传统的移动应用通常在本地设备上进行计算和存储,而移动云将这些任务转移到云端进行处理。通过移动云,移动设备可以利用云端的高性能计算…...
C语言程序的编译
目录 一、预处理(预编译) 二、编译 三、汇编 四,链接 在前面讲到了宏的定义,那么宏在编译时候是如何发生替换的?接下来做一下详细的介绍C语言程序的编译过程主要包括以下几个步骤:预处理、编译、汇编和…...
滴滴三面 | Go后端研发
狠狠的被鞭打了快两个小时… 注意我写的题解不一定是对的,如果你认为有其他答案欢迎评论区留言 bg:23届 211本 社招 1. 自我介绍 2. 讲一个项目的点,因为用到了中间件平台的数据同步,于是开始鞭打数据同步。。 3. 如果同步的时候…...
深度学习之基于Yolov3的行人重识别
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 行人重识别(Person Re-Identification,简称ReID)是计算机视觉领域…...
防火墙最新技术汇总
防火墙技术持续发展,以应对日益复杂的网络安全威胁。以下是防火墙领域的一些最新技术汇总: 下一代防火墙(NGFW):NGFW结合了传统防火墙的分组过滤和状态检测功能,还集成了深度包检测(DPI…...
PikaUnsafe upfileupload
1.client check 客户端检测,前端js检测,禁用js和修改后缀名即可。 php格式不能上传,我们修改后缀上传。 蚁剑成功连接。 2.MIME type 这个就是 content-type 规定上传类型,上面的方法也能成功,也可以修改 conten-ty…...
git拉取项目前需要操作哪些?
1.输入 $ ssh-keygen -t rsa -C "秘钥说明" 按enter键 2.出现 ssh/id_rsa:(输入也可以不输入也可以) 然后按enter键 3.出现empty for no passphrase:(输入也可以不输入也可以) 然后按enter键 4.出现same passphrase again: (输入也可以不输入也…...
报名开启!2024 开源之夏丨Serverless Devs 课题已上线!
Serverless 是近年来云计算领域热门话题,凭借极致弹性、按量付费、降本提效等众多优势受到很多人的追捧,各云厂商也在不断地布局 Serverless 领域。 Serverless Devs 是一个由阿里巴巴发起的 Serverless 领域的开源项目,其目的是要和开发者们…...
DataBinding viewBinding(视图绑定与数据双向绑定)简单案例 (kotlin)
先上效果: 4个view的文字都是通过DataBinding填充的。交互事件:点击图片,切换图片 创建项目(android Studio 2023.3.1) Build.gradle(:app) 引入依赖库(完整源码) buildFeatures { vie…...
TensorFlow基于anaconda3快速构建
基于python构建太累 Installing Packages - Python Packaging User Guide 使用 pip 安装 TensorFlow 有兴趣自己学,我放弃了 -------------------------------------------------------- 下面基于anaconda 1、下载 Index of /anaconda/archive/ | 清华大学开…...
力扣72-编辑距离
题目链接 记忆化搜索: 解题关键:每次仅考虑两字符串word1、word2分别从0 - i修改成0-j下标的完全匹配(下标表示) 临界条件:当 i 或 j 小于0时,表示该字符串为空,编辑距离确定为 y1 或 x1 int dp[501][501…...
K8S 删除pod的正确步骤
在日常的k8s运维过程中,避免不了会对某些pod进行剔除,那么如何才能正确的剔除不需要的pod呢? 首先,需要查出想要删除的pod # 可通过任意方式进行查询 kubectl get pods -A |grep <podname> kubectl get pods -n <names…...
羊大师分析,羊奶健康生活的营养源泉
羊大师分析,羊奶健康生活的营养源泉 羊奶,作为一种古老的饮品,近年来因其独特的营养价值和健康益处而备受关注。今天,羊大师就来探讨一下羊奶与健康之间的紧密联系。 羊奶富含蛋白质、脂肪、维生素和矿物质等多种营养成分。羊奶…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
