当前位置: 首页 > news >正文

python 庆余年2收视率数据分析与可视化

为了对《庆余年2》的收视率进行数据分析与可视化,我们首先需要假设有一组收视率数据。由于实际数据可能无法直接获取,这里我们将使用模拟数据来演示整个过程。

以下是一个简单的步骤,展示如何使用Python(特别是pandas和matplotlib库)来分析和可视化收视率数据:

导入必要的库
python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
生成模拟数据
假设我们有每天的收视率数据:

python

生成模拟数据

dates = pd.date_range(start=‘2023-01-01’, periods=30, freq=‘D’) # 假设从2023年1月1日开始,持续30天
ratings = np.random.rand(30) * 10 + 5 # 随机生成收视率,范围在5-15之间

创建DataFrame

df = pd.DataFrame({‘Date’: dates, ‘Rating’: ratings})
df.set_index(‘Date’, inplace=True)
数据分析
分析收视率的一些基本统计信息:

python
print(df.describe())
数据可视化
使用matplotlib绘制收视率随时间变化的折线图:

python
plt.figure(figsize=(12, 6))
plt.plot(df.index, df[‘Rating’], marker=‘o’)
plt.title(‘《庆余年2》收视率变化’)
plt.xlabel(‘日期’)
plt.ylabel(‘收视率’)
plt.grid(True)
plt.show()
(可选)进一步分析
你可以计算收视率的移动平均线,以查看收视率的长期趋势。
你可以检查收视率的相关性,例如与广告量、其他电视剧的收视率等。
你可以使用seaborn等更高级的库来创建更复杂的可视化。
保存结果
如果你希望保存你的可视化结果,可以使用plt.savefig()函数。

请注意,以上只是一个简单的示例,用于演示如何使用Python进行收视率数据的分析和可视化。在实际应用中,你可能需要处理更复杂和庞大的数据集,并使用更高级的技术和工具。

相关文章:

python 庆余年2收视率数据分析与可视化

为了对《庆余年2》的收视率进行数据分析与可视化,我们首先需要假设有一组收视率数据。由于实际数据可能无法直接获取,这里我们将使用模拟数据来演示整个过程。 以下是一个简单的步骤,展示如何使用Python(特别是pandas和matplotli…...

yolov8训练自己数据集时出现loss值为nan。

具体原因目前暂未寻找到。 解决办法 将参数amp改成False即可。 相关资料: https://zhuanlan.zhihu.com/p/165152789 https://github.com/ultralytics/ultralytics/issues/1148...

[Chapter 5]线程级并行,《计算机系统结构》,《计算机体系结构:量化研究方法》

文章目录 一、互连网络1.1 互连网络概述1.1 互连函数1.1.1 互连函数1.1.2 几种基本的互连函数1.1.2.1 恒等函数1.1.2.2 交换函数1.1.2.3 均匀洗牌函数1.1.2.4 碟式函数1.1.2.5 反位序函数1.1.2.6 移数函数1.1.2.7 PM2I函数 1.2 互连网络的结构参数与性能指标1.2.1 互连网络的结…...

首发!飞凌嵌入式FETMX6ULL-S核心板已适配OpenHarmony 4.1

近日,飞凌嵌入式在FETMX6ULL-S核心板上率先适配了OpenHarmony 4.1,这也是业内的首个应用案例,嵌入式核心板与OpenHarmony操作系统的结合与应用,将进一步推动千行百业的数智化进程。 飞凌嵌入式FETMX6ULL-S核心板基于NXP i.MX 6ULL…...

Power BI实现动态度量值

假设有一张销售数据表Sale: 报表上有一个切片器(Slicer)(下拉框样式), 当选择"第一"时,计算列[FirstSale]与列[Target]的百分比, 选择"第二"时,计算列[SecondSale]与列[Target]的百分比 选择"第三&qu…...

给大家分享一套非常棒的python机器学习课程

给大家分享一套非常棒的python机器学习课程——《AI小天才:让小学生轻松掌握机器学习》,2024年5月完结新课,提供配套的代码笔记软件包下载!学完本课程,可以轻松掌握机器学习的全面应用,复杂特征工程&#x…...

免费,Python蓝桥杯等级考试真题--第6级(含答案解析和代码)

Python蓝桥杯等级考试真题–第6级 一、 选择题 答案&#xff1a;D 解析&#xff1a;4411*4&#xff0c;超出范围&#xff0c;故答案为D。 答案&#xff1a;B 解析&#xff1a;5<8<10&#xff0c;故答案为B。 答案&#xff1a;A 解析&#xff1a;先比较a&#xff0c;然后…...

Spring Boot:SpringBoot 如何优雅地定制JSON响应数据返回

一、前言 目前微服务项目中RESTful API已经是前后端对接数据格式的标配模式了&#xff0c;RESTful API是一种基于REST&#xff08;Representational State Transfer&#xff0c;表述性状态转移&#xff09;原则的应用程序编程接口&#xff08;Application Programming Interfac…...

c++中的constexpr 与decltype

constexpr constexpr 是 C11 引入的关键字&#xff0c;用于声明可以在编译时求值的常量表达式。constexpr 函数可以在编译时被计算&#xff0c;从而可以提高程序的性能并允许进行一些在运行时无法完成的优化。 在 C 中&#xff0c;constexpr 可以用于以下两种情况&#xff1a…...

苹果MacOS系统使用微软远程桌面连接Windows电脑桌面详细步骤

文章目录 前言1. 测试本地局域网内远程控制1.1 Windows打开远程桌面1.2 局域网远程控制windows 2. 测试Mac公网远程控制windows2.1 在windows电脑上安装cpolar2.2 Mac公网远程windows 3. 配置公网固定TCP地址 前言 日常工作生活中&#xff0c;有时候会涉及到不同设备不同操作系…...

【paper】基于分布式采样的多机器人编队导航信念传播模型预测控制

Distributed Sampling-Based Model Predictive Control via Belief Propagation for Multi-Robot Formation NavigationRAL 2024.4Chao Jiang 美国 University of Wyoming 预备知识 马尔可夫随机场&#xff08;Markov Random Field, MRF&#xff09; 马尔可夫随机场&#xff…...

代码随想录算法训练营第二天| 977.有序数组的平方 、209.长度最小的子数组、 59.螺旋矩阵II

977. 有序数组的平方 题目链接&#xff1a;977. 有序数组的平方 文档讲解&#xff1a;代码随想录 状态&#xff1a;so easy 刚开始看到题目第一反应就是平方之后进行排序&#xff0c;数据量在 1 0 4 10^4 104&#xff0c;可以使用O(nlogn)的排序。但是更好的方式是使用双指针&a…...

list stream 改变list属性的值

在Java中&#xff0c;如果你想使用Stream API来改变List中对象的某个属性值&#xff0c;需要注意的是&#xff0c;Stream API本身设计为不可变操作&#xff0c;即它不直接修改原有的集合&#xff0c;而是产生一个新的流或集合。但是&#xff0c;你可以通过流操作来创建一个新的…...

绿色智能:AI机器学习在环境保护中的深度应用与实践案例

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…...

Java高级面试精粹:问题与解答集锦(二)

Java面试问题及答案 1. 什么是Java内存模型&#xff08;JMM&#xff09;&#xff1f;它的作用是什么&#xff1f; 答案&#xff1a; Java内存模型&#xff08;JMM&#xff09;定义了Java虚拟机&#xff08;JVM&#xff09;在计算机内存中的工作方式&#xff0c;包括程序计数器…...

基于机器学习模型预测信用卡潜在用户(XGBoost、LightGBM和Random Forest)

基于机器学习模型预测信用卡潜在用户&#xff08;XGBoost、LightGBM和Random Forest&#xff09; 随着数据科学和机器学习的发展&#xff0c;越来越多的企业开始利用这些技术来提高运营效率。在这篇博客中&#xff0c;我将分享如何利用机器学习模型来预测信用卡的潜在客户。此…...

java 通过 microsoft graph 调用outlook(三)

这次会添加一个Reply接口&#xff0c; 并且使用6.10.0版本 直接上代码 一&#xff0c; POM <!-- office 365 --><dependency><groupId>com.microsoft.graph</groupId><artifactId>microsoft-graph</artifactId><version>6.1…...

QT--TCP网络通讯工具编写记录

QT–TCP网络通讯工具编写记录 文章目录 QT--TCP网络通讯工具编写记录前言演示如下&#xff1a;一、服务端项目文件&#xff1a;【1.1】server_tcp.h 服务端声明文件【1.2】thread_1.h 线程处理声明文件【1.3】main.cpp 执行源文件【1.4】server_tcp.cpp 服务端逻辑实现源文件【…...

如何解决爬虫的IP地址受限问题?

使用代理IP池、采用动态IP更换策略、设置合理的爬取时间间隔和模拟正常用户行为&#xff0c;是解决爬虫IP地址受限问题的主要策略。代理IP池是通过集合多个代理IP来分配爬虫任务&#xff0c;从而避免相同的IP地址对目标网站进行高频次访问&#xff0c;减少被目标网站封禁的风险…...

harmony 文件上传

图片上传 1&#xff0c; 获取文件&#xff0c;这里指的是图片 在鸿蒙内部有一个API pick选择器&#xff0c;实现文件保存和文件选择的功能&#xff0c; 使用pick对象创建PhotoViewPicker实例 传入必要的参数&#xff0c;如选择图片的数量&#xff0c;和弹出窗口的位置&#xf…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...