当前位置: 首页 > news >正文

三维空间坐标系变换(旋转平移)

在探究三维空间下的变换前,首先研究二位空间,因为比较直观,再推广到三维空间。
首先应该清楚的一点是:旋转平移对于坐标系下的以及坐标系本身而言都是相对的(运动的相对性)。

例如:

  1. X O Y XOY XOY坐标系不动,点 P ( x , y ) P(x, y) P(x,y)沿顺时针方向旋转 θ \theta θ,得到点 P ′ P' P,此时点 P ′ P' P X O Y XOY XOY坐标系的坐标为 ( x ′ , y ′ ) (x', y') (x,y)
  2. P ( x , y ) P(x, y) P(x,y)不动,坐标轴 X O Y XOY XOY沿着逆时针方向旋转 θ \theta θ,得到坐标轴 X ′ O Y ′ X'OY' XOY,此时点 P P P X ′ O Y ′ X'OY' XOY下的坐标为 ( x ′ , y ′ ) (x', y') (x,y)
    这两条命题是等价的。

因此,仅讨论坐标系变换

二维空间下的坐标系变换

平移:

旋转:

注:图片来源https://www.cnblogs.com/meteoric_cry/p/7987548.html
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以对于二维旋转来讲,旋转可描述为:设点 P P P X O Y XOY XOY坐标系下坐标为 [ x y ] \begin{bmatrix} x \\ y \end{bmatrix} [xy],将坐标系 X O Y XOY XOY顺时针旋转 θ \theta θ后, P P P点坐标为 [ x ′ y ′ ] \begin{bmatrix} x' \\ y' \end{bmatrix} [xy],则有:
[ x ′ y ′ ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ x y ] \begin{bmatrix} x' \\ y' \end{bmatrix} =\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} [xy]=[cosθsinθsinθcosθ][xy]
旋转矩阵可记为: Q = [ c o s θ − s i n θ s i n θ c o s θ ] Q = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} Q=[cosθsinθsinθcosθ]

三维空间下的坐标系变换

平移:

旋转:

三维空间下,当固定轴选定后,旋转就等价于:其余两轴在其平面内的(二维)旋转。
假设以逆着固定轴正向的方向看去的顺时针为旋转的正向

  1. x x x轴旋转 α \alpha α(在 y z yz yz平面顺时针旋转):
    在这里插入图片描述
    则旋转前后的坐标变化可描述为:
    [ x ′ y ′ x ′ 1 ] = [ 1 0 0 0 0 c o s α − s i n α 0 0 s i n α c o s α 0 0 0 0 1 ] [ x y x 1 ] \begin{bmatrix} x' \\ y' \\ x' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos\alpha & -sin\alpha & 0 \\ 0 & sin\alpha & cos\alpha & 0 \\ 0 &0 & 0& 1\end{bmatrix} \begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix} xyx1 = 10000cosαsinα00sinαcosα00001 xyx1

  2. y y y轴旋转 β \beta β(在 x z xz xz平面顺时针旋转):
    在这里插入图片描述
    则旋转前后的坐标变化可描述为:
    [ x ′ y ′ x ′ 1 ] = [ c o s β 0 s i n β 0 0 1 0 0 − s i n β 0 c o s β 0 0 0 0 1 ] [ x y x 1 ] \begin{bmatrix} x' \\ y' \\ x' \\ 1 \end{bmatrix} = \begin{bmatrix} cos\beta & 0 & sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -sin\beta & 0 & cos\beta & 0 \\ 0 &0 & 0& 1\end{bmatrix} \begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix} xyx1 = cosβ0sinβ00100sinβ0cosβ00001 xyx1

  3. z z z轴旋转 γ \gamma γ(在 x y xy xy平面顺时针旋转):
    在这里插入图片描述
    则旋转前后的坐标变化可描述为:
    [ x ′ y ′ x ′ 1 ] = [ c o s γ − s i n γ 0 0 s i n γ c o s γ 0 0 0 0 1 0 0 0 0 1 ] [ x y x 1 ] \begin{bmatrix} x' \\ y' \\ x' \\ 1 \end{bmatrix} = \begin{bmatrix} cos\gamma & -sin\gamma & 0 & 0 \\ sin\gamma & cos\gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 &0 & 0& 1\end{bmatrix} \begin{bmatrix} x \\ y \\ x \\ 1 \end{bmatrix} xyx1 = cosγsinγ00sinγcosγ0000100001 xyx1

综上,当坐标系沿着 X , Y , Z X,Y,Z X,Y,Z轴分别旋转 α , β , γ \alpha,\beta,\gamma α,β,γ后,旋转矩阵为3个沿单一坐标轴旋转的旋转矩阵的乘积,前后的坐标变化可描述为:

Reference:

  1. 旋转矩阵(Rotation Matrix)的推导及其应用
  2. Wolfram MathWorld: Rotation Matrix
  3. 3d变换基础:平移、旋转、缩放(仿射变换)详解——公式推导

相关文章:

三维空间坐标系变换(旋转平移)

在探究三维空间下的变换前,首先研究二位空间,因为比较直观,再推广到三维空间。 首先应该清楚的一点是:旋转、平移对于坐标系下的点以及坐标系本身而言都是相对的(运动的相对性)。 例如: X O Y …...

OC笔记之foundation框架

OC学习笔记(三) 文章目录 OC学习笔记(三)常用Foundation框架结构体NSRangeNSRange结构体的定义定义 NSRange 的方法打印Range的相关信息NSRange的实际运用查找子字符串返回NSRange结构体 NSPointNSRect NSStringNSString的创建NSS…...

Docker部署springboot包并联通MySQL

Docker部署jar 实现功能 部署springboot下发布的jar包不同docker容器之间通信(如MySQL访问、Redis访问)多个jar包部署 参考文献 Just a moment… Just a moment… https://www.jb51.net/article/279449.htm springboot配置 这里使用多yaml配置文件&…...

多帧激光点云基于标定参数进行融合拼接

1、前言 在三维视觉技术蓬勃发展的今天,点云作为捕获和表示三维环境的基础数据形式,扮演着至关重要的角色。点云融合拼接技术,作为连接孤立点云片段、构建连续、全面三维场景的核心过程,对于自动驾驶、机器人导航、三维建模以及地…...

python数据类型之字符串

目录 1.字符串概念和注意事项 2.字符串内置函数 3.字符串的索引、切片和遍历 4.字符串运算符 5.字符串常用方法 性质判断 开头结尾判断 是否存在某个子串 大小写等格式转化 子串替换 删除两端空白字符 格式化字符串 分割与合并 6.字符串模板 7.exec 函数 8.字符…...

Vue3实战笔记(38)—粒子特效终章

文章目录 前言一、怎样使用官方提供的特效二、海葵特效总结 前言 官方还有很多漂亮的特效,但是vue3只有一个demo,例如我前面实现的两个页面就耗费了一些时间,今天记录一下tsparticles官方内置的几个特效的使用方法,一般这几个就足…...

晶体振荡器

一、晶振与晶体区别 晶振是有源晶振的简称,又叫振荡器,英文名称是oscillator,内部有时钟电路,只需供电便可产生振荡信号;晶体是无源晶振的简称,也叫谐振器,英文名称是crystal,是无极…...

单词可交互的弧形文本

在一个项目中,要求把少儿读本做成电子教材呈现出来,电子书的排版要求跟纸质书一致。其中,英语书有个需求:书中有些不规则排版的文本(如下图所示),当随书音频播放时,被读到的文本要求…...

Linux——进程信号(一)

1.信号入门 1.1生活中的信号 什么是信号? 结合实际红绿灯、闹钟、游戏中的"!"等等这些都是信号。 以红绿灯为例子: 一看到红绿灯我们就知道:红灯停、绿灯行;我们不仅知道它是一个红绿灯而且知道当其出现不同的状况…...

centos9 stream在线安装NVIDIA驱动(rockylinux9.4也成功安装nvidia驱动)

Install NVIDIA Drivers on CentOS Stream 9(rockylinux9.4成功) 主板为技嘉mz72-hb2 显卡为4090 一.Disable Secure Boot From the BIOS 二.Enabling the EPEL Repository on CentOS Stream 9 1.update the DNF package repository cache sudo dnf …...

springmvc不同格式的参数解析

参数解析 application/x-www-form-urlencoded格式 这种格式就是传统的表单提交格式,就是一个个的键值对,会进行url编码,使用springmvc接收时使用RequestParam来进行接收,与传入的字段一一对应,此时使用的参数处理器是R…...

Unity3D让BoxCollider根据子物体生成自适应大小

系列文章目录 unity工具 文章目录 系列文章目录unity工具 👉前言👉一、编辑器添加👉二、代码动态添加的方法(第一种)👉三、代码动态添加的方法(第二种)👉四、重新设置模型的中心点👉壁纸分享👉…...

WSL 2 installation is incomplete.

使用的wsl2版本很旧,因此需要手动更新。 https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi...

Servlet的request对象

request对象的继承关系 1.HttpServletRequest接口继承了ServletRequest接口,对其父接口进行了扩展,可以处理满足所有http协议的请求 2.HttpServletRequest和ServletRequest都是接口,不能创建对象,因此在tomcat底层定义实现类并创…...

蓝桥杯-合并数列

小明发现有很多方案可以把一个很大的正整数拆成若干正整数的和。他采取了其中两种方案,分别将它们列为两个数组 {a1, a2, …, an} 和 {b1, b2, …, bm}。两个数组的和相同。 定义一次合并操作可以将某数组内相邻的两个数合并为一个新数,新数的值是原来两…...

《web应用技术》第9次课后作业

一、将前面的代码继续完善功能 1、采用XML映射文件的形式来映射sql语句; 2、采用动态sql语句的方式,实现条件查询的分页。 二、学习git的使用。 1、每个小组将自己的项目上传到gitee,学会协作开发; 2、学会从gitee上拉取项目…...

FRAUDARCatchSync算法简介

参考:https://blog.51cto.com/u_15127663/2778705 1. 背景 Fraudar 要解决的问题是:找出社交网络中最善于伪装的虚假用户簇。虚假用户会通过增加和正常用户的联系来进行伪装,而这些伪装(边)会形成一个很密集的子网络,可以通过定义…...

刷题之将有序数组转换成二叉搜索树(leetcode)

将有序数组转换成二叉搜索树 正常递归,中序遍历 递归经常会把自己绕晕,还是得画图分析 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(null…...

K-means聚类模型教程(个人总结版)

K-means聚类是一种广泛应用于数据挖掘和数据分析的无监督学习算法。它通过将数据点分成K个簇(cluster),使得同一簇内的数据点之间的相似度最大,不同簇之间的相似度最小。本文将详细介绍K-means聚类算法的背景、基本原理、具体实现…...

android怎么告诉系统不要回收

在Android中,如果你想告诉系统不要回收你的应用程序,可以通过设置Activity的属性来实现。你可以设置android:configChanges属性,指定在哪些配置更改时不重新创建Activity。 例如,如果你想指示系统在屏幕方向更改时不要重新创建Ac…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...