使用Python实现深度学习模型:自动编码器(Autoencoder)
自动编码器(Autoencoder)是一种无监督学习的神经网络模型,用于数据的降维和特征学习。它由编码器和解码器两个部分组成,通过将输入数据编码为低维表示,再从低维表示解码为原始数据来学习数据的特征表示。本教程将详细介绍如何使用Python和PyTorch库实现一个简单的自动编码器,并展示其在图像数据上的应用。
什么是自动编码器(Autoencoder)?
自动编码器是一种用于数据降维和特征提取的神经网络。它包括两个主要部分:
- 编码器(Encoder):将输入数据编码为低维的潜在表示(latent representation)。
- 解码器(Decoder):从低维的潜在表示重建输入数据。
通过训练自动编码器,使得输入数据和重建数据之间的误差最小化,从而实现数据的压缩和特征学习。
实现步骤
步骤 1:导入所需库
首先,我们需要导入所需的Python库:PyTorch用于构建和训练自动编码器模型,Matplotlib用于数据的可视化。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
步骤 2:准备数据
我们将使用MNIST数据集作为示例数据,MNIST是一个手写数字数据集,常用于图像处理的基准测试。
# 定义数据预处理
transform = transforms.Compose([transforms.ToTensor()])# 下载并加载训练数据
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
步骤 3:定义自动编码器模型
我们定义一个简单的自动编码器模型,包括编码器和解码器两个部分。
class Autoencoder(nn.Module):def __init__(self):super(Autoencoder, self).__init__()# 编码器self.encoder = nn.Sequential(nn.Linear(28 * 28, 128),nn.ReLU(),nn.Linear(128, 64),nn.ReLU(),nn.Linear(64, 32))# 解码器self.decoder = nn.Sequential(nn.Linear(32, 64),nn.ReLU(),nn.Linear(64, 128),nn.ReLU(),nn.Linear(128, 28 * 28),nn.Sigmoid())def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x# 创建模型实例
model = Autoencoder()
步骤 4:定义损失函数和优化器
我们选择均方误差(MSE)损失函数作为模型训练的损失函数,并使用Adam优化器进行优化。
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
步骤 5:训练模型
我们使用定义的自动编码器模型对MNIST数据集进行训练。
num_epochs = 20for epoch in range(num_epochs):for data in train_loader:inputs, _ = datainputs = inputs.view(-1, 28 * 28) # 将图像展平为向量# 前向传播outputs = model(inputs)loss = criterion(outputs, inputs)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
步骤 6:可视化结果
训练完成后,我们可以使用训练好的自动编码器模型对测试数据进行编码和解码,并可视化重建结果。
# 加载测试数据
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=10, shuffle=False)# 获取一些测试数据
dataiter = iter(test_loader)
images, labels = dataiter.next()
images_flat = images.view(-1, 28 * 28)# 使用模型进行重建
outputs = model(images_flat)# 可视化原始图像和重建图像
fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20, 4))for images, row in zip([images, outputs], axes):for img, ax in zip(images, row):ax.imshow(img.view(28, 28).detach().numpy(), cmap='gray')ax.get_xaxis().set_visible(False)ax.get_yaxis().set_visible(False)plt.show()
总结
通过本教程,你学会了如何使用Python和PyTorch库实现一个简单的自动编码器(Autoencoder),并在MNIST数据集上进行训练和测试。自动编码器是一种强大的工具,能够有效地进行数据降维和特征学习,广泛应用于图像处理、异常检测、数据去噪等领域。希望本教程能够帮助你理解自动编码器的基本原理和实现方法,并启发你在实际应用中使用自动编码器解决数据处理问题。
相关文章:
使用Python实现深度学习模型:自动编码器(Autoencoder)
自动编码器(Autoencoder)是一种无监督学习的神经网络模型,用于数据的降维和特征学习。它由编码器和解码器两个部分组成,通过将输入数据编码为低维表示,再从低维表示解码为原始数据来学习数据的特征表示。本教程将详细介…...
数据结构--树与二叉树--编程实现以孩子兄弟链表为存储结构递归求树的深度
数据结构–树与二叉树–编程实现以孩子兄弟链表为存储结构递归求树的深度 题目: 编程实现以孩子兄弟链表为存储结构,递归求树的深度。 ps:题目来源2025王道数据结构 思路: 从根结点开始 结点 N 的高度 max{N 孩子树的高度 1, N兄弟树的…...
Property xxx does not exist on type ‘Window typeof globalThis‘ 解决方法
问题现象 出现以上typescript警告,是因为代码使用了window的非标准属性,即原生 window 对象上不存在该属性。 解决办法 在项目 根目录 或者 src目录 下新建 xxx.d.ts 文件,然后进行对该 属性 进行声明即可。 注意:假如xxx.d.ts文…...
BOM..
区别:...
rust的版本问题,安装问题,下载问题
rust的版本、安装、下载问题 rust版本问题, 在使用rust的时候,应用rust的包,有时候包的使用和rust版本有关系。 error: failed to run custom build command for pear_codegen v0.1.2 Caused by: process didnt exit successfully: D:\rus…...
SDUT 链表9-------7-9 sdut-C语言实验-约瑟夫问题
7-9 sdut-C语言实验-约瑟夫问题 分数 20 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 n个人想玩残酷的死亡游戏,游戏规则如下: n个人进行编号,分别从1到n,排成一个圈,顺时针从1开始数到m,数到m的…...
Anthropic绘制出了大型语言模型的思维图:大型语言模型到底是如何工作
今天,我们报告了在理解人工智能模型的内部运作方面取得的重大进展。我们已经确定了如何在 Claude Sonnet(我们部署的大型语言模型之一)中表示数百万个概念。这是对现代生产级大型语言模型的首次详细了解。这种可解释性的发现将来可以帮助我们…...
网络工程师练习题
网络工程师 随着company1网站访问量的不断增加,公司为company1设立了多台服务器。下面是不同用户ping网站www.company1.com后返回的IP地址及响应状况,如图8.58所示。从图8.58可以看出,域名www.company1.com对应了多个IP地址,说明在图8.59所示的NDS属性中启用了循环功能。在…...
思科模拟器--03.RIP协议路由--24.5.17
1.首先,先创建两个个人电脑:PC0和PC1和三个路由器:R1,R2和R3. (诀窍:建议用文本框标注一下重要简短的内容; 目的:降低失误概率,提高成功率!) 第0步:(个人电脑的IP,子网掩码和默认网关配置) 接着,可以先将个人电脑的IP和网关先配置一下…...
当实时互动遇上新硬件:GIAC 全球互联网架构大会「新硬件」专题论坛
今年,被广泛预见为 AI 技术关键转折点的年份,生成式 AI 热度不断攀升,应用落地加速深化。在这个过程中,为了适应日益复杂的业务需求,背后的架构也将迎来新一轮的革新。 而在这场技术变革的浪潮中,GIAC 全球…...
赶紧收藏!2024 年最常见 20道 Redis面试题(三)
上一篇地址:赶紧收藏!2024 年最常见 20道 Redis面试题(二)-CSDN博客 五、Redis的持久化机制是什么? Redis 是一个高性能的键值存储系统,支持多种类型的数据结构,如字符串、哈希、列表、集合、…...
VMware 和 VirtualBox开机自启指定虚拟机详细教程
VMware上虚拟机随宿主机开机自启 1. 设置自动启动虚拟机 网上教程旧版的,界面和新版有所差异。17版本设置如下:VMware Workstation工作台 -> 文件 -> 配置自动启动虚拟机 -> 按顺序选择需要启动的虚拟机 VMWare17配置自动启动虚拟机提示&…...
note-网络是怎样连接的2 协议栈和网卡
助记提要 协议栈的结构协议栈创建连接的实际过程协议栈发送数据包的2个判断依据TCP确认数据收到的原理断开连接的过程路由表和ARPMAC地址的分配MAC模块的工作通过电信号读取数据的原理网卡和协议栈接收包的过程ICMPUDP协议的适用场景 2章 用电信号传输TCP/IP数据 探索协议栈和…...
ros学习之路径规划
一、全局路径规划中的地图 1、栅格地图(Grid Map)2、概率图(Cost Map)3、特征地图(Feature Map4、拓扑地图(Topological Map) 二、全局路径规划算法 1、Dijkstra 算法 2、最佳路径优先搜索算…...
Qt 顺序容器的详细介绍
一.顺序容器介绍 Qt 中的顺序容器包括 QVector、QList、QLinkedList 和 QStack。这些容器都提供了类似于 C STL 中的容器的功能,但是在 Qt 中提供了更多的功能和接口。 二.具体介绍 1.QVector QVector:是一个动态数组,可以在其末尾快速插入…...
基于语音识别的智能电子病历(三)之 M*Modal
讨论“基于语音识别的智能电子病历”,就绕不开 Nuance 和 M*Modal。这2个公司长时间的占据第一和第二的位置。下面介绍一下M*Modal。 这是2019年的一个新闻“专业医疗软件提供商3M公司为自己购买了一份圣诞礼物,即M*Modal IP LLC的医疗技术业务…...
理解Apache Storm的实际用途和应用场景
学习目标: 理解Apache Storm的实际用途和应用场景 学习内容: 1. 实时数据处理和分析 1.1 实时日志分析 公司可以使用Storm来实时处理和分析服务器日志。例如,电商网站可以实时监控用户行为日志,以检测异常活动(如DD…...
【iceberg】数据湖与iceberg调研与实战
文章目录 一. 为什么现在要强调数据湖1. 大数据架构发展历史2. Lambda架构与kappa架构3. 数据湖所具备的能力 二. iceberg是数据湖吗1. iceberg的诞生2. iceberg设计之table format从如上iceberg的数据结构可以知道,iceberg在数据查询时,1.查找文件的时间…...
xrdp多用户多控制界面远程控制
1、无桌面安装桌面(原本有ubuntu桌面的可以直接跳过这一步) Gnome 与 xfce 相比,xfce 由于其轻巧,它可以安装在低端台式机上。Xfce 优雅的外观,增强了用户体验,它对用户非常友好,性能优于其他桌…...
git会忽略我们工作改动中的大小写
在我们日常git工作中,我们对于文件名字的大小写修改正常是不会被git记录的 这是因为默认情况下git是不区分大小写的 这会导致一个问题,由于我们修改了文件名字的大小写,而对于文件之间相互依赖的导入代码没有对应修改 如果我们此时本地推送…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
