图论-最短路算法
1. Floyd算法
- 作用:用于求解多源最短路,可以求解出任意两点的最短路
- 利用动态规划只需三重循环即可(动态规划可以把问题求解分为多个阶段)
- 定义dp[k][i][j]表示点i到点j的路径(除去起点终点)中最大编号不超过k的情况下,点i到点j的最短距离。
- 当加入第k个点作为i到j的中间点:
发现可以使用滚动数组优化第一维度:
枚举所有k,判断是否可以作为中间点,可以作为中间点则优化最短路。
初始化:如果<i, j>无边,则dp[i][j] = INF, 有边则等于边权;dp[i][i] = 0(自己到自己是不用走的)
为了理解更深刻,简单举个例子:
各点之间的关系用邻接矩阵保存(下图中又两个邻接矩阵,一个是两点之间的最短距离,还有一个是两点之间的最短路中经过的节点。)
更新
每次基于之前能找到的最短路径,如果比它短就更新。
以2号节点作为中转站是基于1号节点作为中转站的,经过n轮递推就可以得到最终答案(任意两点的最短路)
例题:
蓝桥1121
为什么先遍历k,之后遍历i,j?
因为要符合顺序,遍历完中间点后, 就要遍历邻接矩阵,进行最短距离的更新。
import os
import sys# 请在此输入您的代码
n, m, q = map(int, input().split())
INF = 10 ** 18
# dp[i][j]表示i到j的最短路
dp = [[INF] * (n + 1) for i in range(n + 1)] # 初始值设较大值
for i in range(1, n + 1):dp[i][i] = 0 # 自己到自己的距离为0
for _ in range(m):u, v, w = map(int, input().split())dp[u][v] = dp[v][u] = min(dp[u][v], w) # 双向边/无向边(可能有重边)# Floyd算法模板
# dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j])
for k in range(1, n + 1):for i in range(1, n + 1):for j in range(1, n + 1):dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j])for _ in range(q):u, v = map(int, input().split())if dp[u][v] == INF:print(-1)else:print(dp[u][v])
蓝桥8336
import os
import sys# 请在此输入您的代码
"""
翻译题意:有n个城市,m条边就是有m条路径可以流通,每个城市有自己的商品产出,可以拿去别的地方销售,
需要求出最大利润,但是商品产量ai是不变的,生产成本pi也是不变的,只有售卖单价会随着商品运输到其他
城市会改变,以及带来的运输费用(这里的运输费用有一个路径的问题,需要用最短路算出来最少支付。
"""n, m = map(int, input().split())
# g = s - p - f(路径费用)
INF = 10 ** 17
a, p, s = [0] * (n + 1), [0] * (n + 1), [0] * (n + 1) # 商品的产量, 生产成本, 售卖单价
f = [[INF] * (n + 1) for i in range(n + 1)] # 记录最短路(也就是最短的运输费用)
g = [[0] * (n + 1) for i in range(n + 1)] # 记录利润
for i in range(1, n + 1):a[i], p[i], s[i] = map(int, input().split())
for _ in range(1, m + 1):u, v, w = map(int, input().split())f[u][v] = f[v][u] = min(f[u][v], w)
for i in range(1, n + 1):f[i][i] = 0for k in range(1, n + 1):for i in range(1, n + 1):for j in range(1, n + 1):f[i][j] = min(f[i][k] + f[k][j], f[i][j])
# g[i][j]表示城市1的物品运输到城市j可得的利润=城市j的售价-城市i的成本-运输f[i][j]
for i in range(1, n + 1):for j in range(1, n + 1):g[i][j] = s[j] - p[i] - f[i][j]
ans = 0
for i in range(1, n + 1):# 遍历每个城市的商品now_ans = 0# 遍历移动到的城市(包括自己本身)for j in range(1, n + 1):now_ans = max(now_ans, a[i] * g[i][j])ans += now_ans # 记录每个城市的利润print(ans)
总结下解题步骤:
- 初始化邻接矩阵(有边直接连接的直接存,没有的存INF最大值,自己到自己的路径长度为0)
- 遍历(k,i,j)更新i到j的最短路,通过k
- 依据题意更新答案
2. Dijkstra算法
作用:处理非负权边的单源最短路问题
利用贪心+动态规划思想,实现从源点s出发到所有点的最短距离
核心思想:从起点出发,每次选择距离最短的点进行”松弛”操作
算法步骤:
1.将起点入队列,d数组表示从起点s出发到达每个最短距离
2.不断取出队列中距离最小的点u,进行“松弛”:
对于从u到v,权重为w的边
正在更新中...
相关文章:
图论-最短路算法
1. Floyd算法 作用:用于求解多源最短路,可以求解出任意两点的最短路 利用动态规划只需三重循环即可(动态规划可以把问题求解分为多个阶段)定义dp[k][i][j]表示点i到点j的路径(除去起点终点)中最大编号不超…...

家政预约小程序05服务管理
目录 1 设计数据源2 后台管理3 后端API4 调用API总结 家政预约小程序的核心是展示家政公司提供的各项服务的能力,比如房屋维护修缮,家电维修,育婴,日常保洁等。用户在选择家政服务的时候,价格,评价是影响用…...

Django自定义命令
Django自定义命令 我们知道,Django内部内置了很多命令,例如 python manage.py runserver python manage.py makemigrations python manage.py migrate我们可以在python控制台中查看所有命令 我们也可以自定义命令,让python manage.py执行…...
详解VLSM技术
在现代网络设计中,如何高效地分配和管理IP地址是一个关键问题。传统的子网划分方法虽然简单,但在实际应用中常常导致IP地址的浪费。为了应对这一问题,VLSM(Variable Length Subnet Mask,可变长子网掩码)技术…...

面向浏览器端免费开源的三维可视化编辑器,包含BIM轻量化,CAD解析预览等特色功能。
ES 3DEditor 🌍Github地址 https://github.com/mlt131220/ES-3DEditor 🌍在线体验 https://editor.mhbdng.cn/#/ 基于vue3与ThreeJs,具体查看Doc 主要功能: 模型导入展示,支持OBJ、FBX、GLTF、GLB、RVT、IFC、SEA、3…...

Nacos 进阶篇---Nacos服务端怎么维护不健康的微服务实例 ?(七)
一、引言 在 Nacos 后台管理服务列表中,我们可以看到微服务列表,其中有一栏叫“健康实例数” (如下图),表示对应的客户端实例信息是否可用状态。 那Nacos服务端是怎么感知客户端的状态是否可用呢 ? 本章…...

【oracle004】oracle内置函数手册总结(已更新)
1.熟悉、梳理、总结下oracle相关知识体系。 2.日常研发过程中使用较少,随着时间的推移,很快就忘得一干二净,所以梳理总结下,以备日常使用参考 3.欢迎批评指正,跪谢一键三连! 总结源文件资源下载地址&#x…...

建模:Maya
一、常用按键 1、alt 左键 —— 环绕查看 2、alt 中键 —— 拖动模型所在面板 3、空格 —— 进入三视图模式;空格 左键按住拖动 —— 切换到对应视图 二、骨骼归零 1、T Pose 旋转模式,点击模型,摆好T姿势即可 2、复制模型设置200距离…...
持续总结中!2024年面试必问 20 道 Redis面试题(四)
上一篇地址:持续总结中!2024年面试必问 20 道 Redis面试题(三)-CSDN博客 七、Redis过期键的删除策略? Redis 过期键的删除策略主要涉及以下几种方式: 1. 定时删除(Timed Expirationÿ…...
Java中关于List的一些常用操作
先定义一个List,代码如下 //定义一个实例类 public class Model{private String id;private String code;private String name;//setter getter 方法省略}//定义一个List,赋值过程省略 List<Model> list new ArrayList<>();1.将List中每一个对象的id…...
Docker仓库解析
目录 1、Docker仓库类型2、Docker仓库的作用3、工作原理4、管理与使用最佳实践 Docker仓库是Docker生态系统中的重要组成部分,它是用于存储和分发Docker镜像的集中化服务。无论是公共还是私有,仓库都是开发者之间共享和复用容器镜像的基础。 1、Docker仓…...
开发人员容易被骗的原因有很多,涉及技术、安全意识、社会工程学以及工作环境等方面。以下是一些常见原因:
技术方面: 漏洞和补丁管理不当:未及时更新软件和依赖库可能存在已知漏洞,容易被攻击者利用。缺乏安全编码实践:没有遵循安全编码规范,容易引入SQL注入、跨站脚本(XSS)等安全漏洞。错误配置&…...
使用Python实现深度学习模型:自动编码器(Autoencoder)
自动编码器(Autoencoder)是一种无监督学习的神经网络模型,用于数据的降维和特征学习。它由编码器和解码器两个部分组成,通过将输入数据编码为低维表示,再从低维表示解码为原始数据来学习数据的特征表示。本教程将详细介…...
数据结构--树与二叉树--编程实现以孩子兄弟链表为存储结构递归求树的深度
数据结构–树与二叉树–编程实现以孩子兄弟链表为存储结构递归求树的深度 题目: 编程实现以孩子兄弟链表为存储结构,递归求树的深度。 ps:题目来源2025王道数据结构 思路: 从根结点开始 结点 N 的高度 max{N 孩子树的高度 1, N兄弟树的…...

Property xxx does not exist on type ‘Window typeof globalThis‘ 解决方法
问题现象 出现以上typescript警告,是因为代码使用了window的非标准属性,即原生 window 对象上不存在该属性。 解决办法 在项目 根目录 或者 src目录 下新建 xxx.d.ts 文件,然后进行对该 属性 进行声明即可。 注意:假如xxx.d.ts文…...

BOM..
区别:...

rust的版本问题,安装问题,下载问题
rust的版本、安装、下载问题 rust版本问题, 在使用rust的时候,应用rust的包,有时候包的使用和rust版本有关系。 error: failed to run custom build command for pear_codegen v0.1.2 Caused by: process didnt exit successfully: D:\rus…...
SDUT 链表9-------7-9 sdut-C语言实验-约瑟夫问题
7-9 sdut-C语言实验-约瑟夫问题 分数 20 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 n个人想玩残酷的死亡游戏,游戏规则如下: n个人进行编号,分别从1到n,排成一个圈,顺时针从1开始数到m,数到m的…...

Anthropic绘制出了大型语言模型的思维图:大型语言模型到底是如何工作
今天,我们报告了在理解人工智能模型的内部运作方面取得的重大进展。我们已经确定了如何在 Claude Sonnet(我们部署的大型语言模型之一)中表示数百万个概念。这是对现代生产级大型语言模型的首次详细了解。这种可解释性的发现将来可以帮助我们…...

网络工程师练习题
网络工程师 随着company1网站访问量的不断增加,公司为company1设立了多台服务器。下面是不同用户ping网站www.company1.com后返回的IP地址及响应状况,如图8.58所示。从图8.58可以看出,域名www.company1.com对应了多个IP地址,说明在图8.59所示的NDS属性中启用了循环功能。在…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

npm安装electron下载太慢,导致报错
npm安装electron下载太慢,导致报错 背景 想学习electron框架做个桌面应用,卡在了安装依赖(无语了)。。。一开始以为node版本或者npm版本太低问题,调整版本后还是报错。偶尔执行install命令后,可以开始下载…...