当前位置: 首页 > news >正文

C++学习笔记(21)——继承

在这里插入图片描述


目录

  • 1. 继承的概念及定义
    • 1.1 继承的概念
    • 1.2 继承定义
      • 1.2.1 定义格式
      • 1.2.2 继承关系和访问限定符
      • 1.2.3 继承基类成员访问方式的变化
    • 继承的概念
    • 总结:
  • 2. 基类和派生类对象赋值转换
  • 3.继承中的作用域
  • 4.派生类的默认成员函数
    • 知识点:派生类中6个默认成员函数是如何生成的呢?
    • 知识点:如何建立一个不能被继承的类?
  • 5.继承与友元
  • 6. 继承与静态成员
  • 7.复杂的菱形继承及菱形虚拟继承
    • 单继承
    • 多继承
    • 菱形继承
      • 菱形继承的问题
  • 虚拟继承
  • 8.继承的总结和反思
  • 9.继承与组合——耦合性
      • 继承的缺陷——高耦合
      • 组合针对继承缺陷的改进——低耦合
  • 10.继承的底层原理


1. 继承的概念及定义

1.1 继承的概念

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用.

简而言之,不是无条件复用就叫继承。
继承是复用的特殊情况,复用的权限做了分层。


1.2 继承定义

1.2.1 定义格式

下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类
在这里插入图片描述


1.2.2 继承关系和访问限定符

继承关系和访问限定符
在这里插入图片描述


1.2.3 继承基类成员访问方式的变化

继承基类成员访问方式的变化
在这里插入图片描述


继承的概念

基类就是父类,派生类就是子类;

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用。


总结:

  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
  2. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
  3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected> private。
  4. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过最好显示的写出继承方式。
  5. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。

2. 基类和派生类对象赋值转换

  1. 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run—Time Type Information)的dynamic_cast 来进行识别后进行安全转换。(ps:这个我们后面再讲解,这里先了解一下)
  2. 基类对象不能赋值给派生类对象。
  3. 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。

简而言之:子类可以赋值给父类,因为子类赋值的时候可以对准唯一的父类按图索骥把父类的值找出来后赋值,反过来子类成千上万不唯一,父类不知道找哪个子类赋值;父类不能赋值给子类。换言之,继承的赋值方向受限制;


这张图里面子类Student将自己的切片_name,_sex,_age三个值赋值给了它的父类Person的_name,_sex,_age。而_NO不是父类元素,因此不接收子类值。
在这里插入图片描述


3.继承中的作用域

子类调用父类成员不能自动调用需要我们手动写明,子类调用父类的成员需要显示调用,类似于匿名对象。
  1. 在继承体系中基类和派生类都有独立的作用域。
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问)注意,隐藏是说子类确实携带了父类的函数,但是子类一般情况下不能用。
  3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
  4. 注意在实际中在继承体系里面最好不要定义同名的成员;

    简而言之,子类和父类的函数只要同名,不论参数如何,子类都率先用自己的函数,除非特别指明了要父类的函数;即父类子类可以有同名成员,子类用到自己的成员时默认情况下是直接访问子类的成员,可以看作是子类的成员把父类的同名成员隐藏了。


4.派生类的默认成员函数

子类继承父类,其成员函数的继承的是使用权继承。
父类是土壤,子类是作物,我们不主动做区分编译器就会把父类和子类当一个整体;

子类的6个默认成员函数,构造函数如果父类有就先用父类的,父类没有就必须自己显示写一个;拷贝构造、operator=必须父类给;释放空间时先启动子类的析构,在启动父类的析构;


知识点:派生类中6个默认成员函数是如何生成的呢?

6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。

  2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。拷贝时我们需要把子类里面父类的那一部分拷贝出来,这时候子类赋值给父类,就会生成一个只含有父类值的对象,我们拿这个对象去做初始化。即,父类起到一个筛选的功能。

  3. 派生类的operator=必须要调用基类的operator=完成基类的复制。

  4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。

  5. 派生类对象初始化先调用基类构造再调派生类构造。

  6. 派生类对象析构清理先调用派生类析构再调基类的析构。

  7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(这个我们后面会讲解)。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。

  8. 在这里插入图片描述

    默认成员函数的作用顺序:构造时先父后子,析构时先子后父。这样的顺序可以在构造时为子类的产生提供条件,在析构时确保子类析构时触发可能的一些父类的存储函数以存储子类的一些永久数据;


知识点:如何建立一个不能被继承的类?

答:将构造函数私有(使得其他对象永远使用其构造以初始化)或使用final,明确说明不能被继承。

5.继承与友元

友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员 。即,友元类必须手动一个个写。

6. 继承与静态成员

基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个子类,都只有一个static成员实例 ,其地址是相同的。即,静态成员变量就像是祖传宅基地。


7.复杂的菱形继承及菱形虚拟继承

单继承

一个子类只有一个直接父类时称这个继承关系为单继承。
在这里插入图片描述


多继承

一个子类有两个或以上直接父类时称这个继承关系为多继承 。
在这里插入图片描述


菱形继承

菱形继承是多继承的一种特殊情况。
在这里插入图片描述

菱形继承的问题

从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。 在Assistant的对象中Person成员会有两份。


虚拟继承

  1. 虚拟继承可以解决菱形继承的二义性数据冗余的问题。
  2. 虚拟继承解决数据冗余和二义性的原理
    为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成员的模型。

下图是菱形继承的内存对象成员模型:这里可以看到数据冗余
在这里插入图片描述

下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D对象中将A放到的了对象组成的最下面,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量可以找到下面的A
在这里插入图片描述

需要注意的是,虚拟继承不要在其他地方去使用。虚继承可读性不高,尽可能不要使用虚继承。

8.继承的总结和反思

  1. 很多人说C++语法复杂,其实多继承就是一个体现。有了多继承,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设计出菱形继承。否则在复杂度及性能上都有问题。
  2. 多继承可以认为是C++的缺陷之一,很多后来的OO语言都没有多继承,如Java。
  3. 继承和组合
    public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。
    组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。
    优先使用对象组合,而不是类继承。

9.继承与组合——耦合性

继承的缺陷——高耦合

继承经常牵一发而动全身。

继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称为白箱复用(white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类间的依赖关系很强,耦合度高。


组合针对继承缺陷的改进——低耦合

组合更加模块化。

对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装。

在实践中尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用继承,可以用组合,就用组合。


10.继承的底层原理

编译器编译的步骤:

源文件——stack.c、stack.cpp、test.cpp

  1. 预处理——stcak.i、test.i
    宏替换等
    头文件的展开

  2. 编译——stack.s、tsst.s
    检查语法生成汇编代码

  3. 汇编——stack.o、test.o
    汇编码转换成二进制机器码

  4. 链接——a.out
    合并文件

ps. 继承的声明与定义需要注意

  1. 声明会找到后面的定义,将后面的定义“填充”到声明处;
  2. 如果声明和定义分离会出现不可实例化问题;
  3. inlcude< stack.hpp >声明和定义分离就写到一个文件内就可以了,因为.h里面不止有声明还有定义。这样一来编译时就可以找到地址;
  4. 最好直接定义,不要声明和定义分离;

相关文章:

C++学习笔记(21)——继承

目录 1. 继承的概念及定义1.1 继承的概念1.2 继承定义1.2.1 定义格式1.2.2 继承关系和访问限定符1.2.3 继承基类成员访问方式的变化 继承的概念总结&#xff1a; 2. 基类和派生类对象赋值转换3.继承中的作用域4.派生类的默认成员函数知识点&#xff1a;派生类中6个默认成员函数…...

DOS学习-目录与文件应用操作经典案例-more

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一.前言 二.使用 三.案例 一.前言 DOS系统的more命令是一个用于查看文本文件内容的工具。…...

android 在 Activity 的 onCreate 中获取View 的宽高

view 的 post 执行时&#xff0c;首先会判断view 的 mAttatchInfo 是否为空&#xff0c;如果不为空&#xff0c;则将Runnable 添加到mAttachInfo.handler 的 UI线程MessageQueue 中&#xff1b;如果为空&#xff0c;则先将Runnable 暂存在view 的类为HandlerActionQueue的mRunQ…...

Pod进阶——资源限制以及探针检查

目录 一、资源限制 1、资源限制定义&#xff1a; 2、资源限制request和limit资源约束 3、Pod和容器的资源请求和限制 4、官方文档示例 5、CPU资源单位 6、内存资源单位 7、资源限制实例 ①编写yaml资源配置清单 ②释放内存&#xff08;node节点&#xff0c;以node01为…...

XSS---DOM破坏

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.什么是DOM破坏 在HTML中&#xff0c;如果使用一些特定的属性名&#xff08;如id或name&#xff09;给DOM元素命名&#xff0c;这些属性会在全局作用域中创建同名的全局变量&#xff0c;指向对…...

2024电工杯数学建模B 题:大学生平衡膳食食谱的优化设计

背景&#xff1a; 大学时代是学知识长身体的重要阶段&#xff0c; 同时也是良好饮食习惯形成的重要时期。这一特 定年龄段的年轻人&#xff0c; 不仅身体发育需要有充足的能量和各种营养素&#xff0c; 而且繁重的脑力劳动和 较大量的体育锻炼也需要消耗大量的能源物质。 大学生…...

LeetCode 1542.找出最长的超赞子字符串:前缀异或和(位运算)

【LetMeFly】1542.找出最长的超赞子字符串&#xff1a;前缀异或和&#xff08;位运算&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/find-longest-awesome-substring/ 给你一个字符串 s 。请返回 s 中最长的 超赞子字符串 的长度。 「超赞子字符串」需…...

LLM企业应用落地场景中的问题概览

三个问题 AI思维快速工具:需要对接LLM的API、控制幻觉、管理知识库。POC验证四个难点 私有化部署的环境:包括网络和服务器环境。交互友好意想不到的情况方向选择:让客户做目标和方向的选择问题 一、RAG 多跳问题 通常发生在报告编写的数据整理环节,比如要从一堆报表中找…...

基于灰狼优化算法优化支持向量机(GWO-SVM)时序预测

代码原理及流程 基于灰狼优化算法优化支持向量机&#xff08;GWO-SVM&#xff09;的时序预测代码的原理和流程如下&#xff1a; 1. **数据准备**&#xff1a;准备时序预测的数据集&#xff0c;将数据集按照时间顺序划分为训练集和测试集。 2. **初始化灰狼群体和SVM模型参数…...

C++中获取int最大与最小值

不知道大家有没有遇到过这种要求&#xff1a;“返回值必须是int&#xff0c;如果整数数超过 32 位有符号整数范围 [−2^31, 2^31 − 1] &#xff0c;需要截断这个整数&#xff0c;使其保持在这个范围内。例如&#xff0c;小于 −2^31 的整数应该被固定为 −2^31 &#xff0c;大…...

学习通高分免费刷课实操教程

文章目录 概要整体架构流程详细步骤云上全平台登录步骤小结 概要 我之前提到过一个通过浏览器的三个脚本就可以免费高分刷课的文章&#xff0c;由于不方便拍视频进行实操演示&#xff0c;然后写下了这个实操教程&#xff0c;之前的三个脚本划到文章末尾 整体架构流程 整体大…...

缓存降级

当Redis缓存出现问题或者无法正常工作时,需要有一种应对措施,避免直接访问数据库而导致整个系统瘫痪。缓存降级就是这样一种机制。 主要的缓存降级策略包括: 本地缓存降级 当Redis缓存不可用时,可以先尝试使用本地进程内缓存,如Guava Cache或Caffeine等。这样可以减少对Redis…...

PyQt6--Python桌面开发(32.QMenuBar菜单栏控件)

QMenuBar菜单栏控件 选择Main Window...

golang创建式设计模式---工厂模式

创建式设计模式—工厂模式 目录导航 创建式设计模式---工厂模式1)什么是工厂模式2)使用场景3)实现方式4)实践案例5)优缺点分析 1)什么是工厂模式 工厂模式(Factory Method Pattern)是一种设计模式&#xff0c;旨在创建对象时&#xff0c;将对象的创建与使用进行分离。通过定义…...

高精度定位平板主要应用在哪些领域

高精度定位平板是一种集成了高精度定位技术和强大计算能力的设备&#xff0c;能够提供亚米级甚至厘米级的定位精度。其应用领域广泛&#xff0c;涵盖测绘、精准农业、工程建设、地理信息系统&#xff08;GIS&#xff09;、公共安全等多个方面。这种设备凭借其高精度和耐用性&am…...

conda使用常用命令

Conda是一个非常常用的Python包管理器&#xff0c;也是Anaconda Python发行版的一部分。它可以帮助用户安装、更新、卸载Python包&#xff0c;以及管理Python虚拟环境。在这篇博客中&#xff0c;我们将总结一些常用的Conda命令及其用法。 安装和更新Conda 在使用Conda之前&…...

22-LINUX--多线程and多进程TCP连接

一.TCP连接基础知识 1.套接字 所谓套接字(Socket)&#xff0c;就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。一个套接字就是网络上进程通信的一端&#xff0c;提供了应用层进程利用网络协议交换数据的机制。从所处的地位来讲&#xff0c;套接字上联应用进程…...

像素级创意:深入浅出PixelCNN图像合成技术

参考 https://arxiv.org/pdf/1601.06759 https://blog.csdn.net/zcyzcyjava/article/details/126559327 需要熟悉熵的一些理论、和极大释然估计等价于最小化交叉熵等知识 1. pixelcnn建模方法 pixelcnn做生成模型的想必都有耳闻。它是一种自回归模型&#xff0c;什么是自回归…...

MyBatisPlus使用流程

引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.4</version> </dependency> 版本号根据需要选取 在实体类上加注解声明&#xff0c;表信息 根据数…...

爬虫技术升级:如何结合DrissionPage和Auth代理插件实现数据采集

背景/引言 在大数据时代&#xff0c;网络爬虫技术已经成为数据收集的重要手段之一。爬虫技术可以自动化地从互联网上收集数据&#xff0c;节省大量人力和时间成本。然而&#xff0c;当使用需要身份验证的代理服务器时&#xff0c;许多现有的爬虫框架并不直接支持代理认证。这就…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

41道Django高频题整理(附答案背诵版)

解释一下 Django 和 Tornado 的关系&#xff1f; Django和Tornado都是Python的web框架&#xff0c;但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架&#xff0c;鼓励快速开发和干净、实用的设计。它遵循MVC设计&#xff0c;并强调代码复用。Django有…...