当前位置: 首页 > news >正文

[7] CUDA之常量内存与纹理内存

CUDA之常量内存与纹理内存

1. 常量内存

  • NVIDIA GPU卡从逻辑上对用户提供了 64KB 的常量内存空间,可以用来存储内核执行期间所需要的恒定数据
  • 常量内存对一些特定情况下的小数据量的访问具有相比全局内存的额外优势,使用常量内存也一定程序上减少了对全局内存的带宽占用
  • 常量内存具有 cache 缓冲
  • 下边例举一个简单的程序进行 a * x + b 的数学运算
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
//Defining two constants
__constant__ int constant_f;
__constant__ int constant_g;
#define N	5
//Kernel function for using constant memory
__global__ void gpu_constant_memory(float *d_in, float *d_out) {//Thread index for current kernelint tid = threadIdx.x;	d_out[tid] = constant_f*d_in[tid] + constant_g;
}
  • 常量内存中的变量使用 __constant__ 关键字修饰
  • 使用 cudaMemcpyToSymbol 函数吧这些常量复制到内核执行所需要的常量内存中
  • 常量内存应合理使用,不然会增加程序执行时间
  • 主函数调用如下:
int main(void) {//Defining Arrays for hostfloat h_in[N], h_out[N];//Defining Pointers for devicefloat *d_in, *d_out;int h_f = 2;int h_g = 20;// allocate the memory on the cpucudaMalloc((void**)&d_in, N * sizeof(float));cudaMalloc((void**)&d_out, N * sizeof(float));//Initializing Arrayfor (int i = 0; i < N; i++) {h_in[i] = i;}//Copy Array from host to devicecudaMemcpy(d_in, h_in, N * sizeof(float), cudaMemcpyHostToDevice);//Copy constants to constant memorycudaMemcpyToSymbol(constant_f, &h_f, sizeof(int),0,cudaMemcpyHostToDevice);cudaMemcpyToSymbol(constant_g, &h_g, sizeof(int));//Calling kernel with one block and N threads per blockgpu_constant_memory << <1, N >> >(d_in, d_out);//Coping result back to host from device memorycudaMemcpy(h_out, d_out, N * sizeof(float), cudaMemcpyDeviceToHost);//Printing result on consoleprintf("Use of Constant memory on GPU \n");for (int i = 0; i < N; i++) {printf("The expression for input %f is %f\n", h_in[i], h_out[i]);}//Free up memorycudaFree(d_in);cudaFree(d_out);return 0;
}

在这里插入图片描述

2. 纹理内存

  • 纹理内存时另外一种当数据的访问具有特定的模式的时候能够加速程序执行,并减少显存带宽的制度存储器,像常量内存一样,它也在芯片内部被cache 缓冲
  • 该存储器最初是为了图像绘制而设计的,但也可以被用于通过计算
  • 当程序进行具有很大程序上的空间临近性的访存的时候,这种存储器变得非常高效。空间临近性的意思是:每个现成的读取位置都和其他现成的读取位置临近,这对那些需要处理4个临近的相关点和8个临近的点的图像处理应用非常有用。一种线程进行2D的平面空间临近性的访存的例子,可能会像下表:
    在这里插入图片描述
  • 通用的全局内存的cache将不能有效处理这种空间临近性,可能会导致进行大量的显存读取传输。纹理存储器被设计成能够利用这种方寸模型,这样它只会从显存读取1次,然后缓冲掉,因此执行速度会快得多
  • 纹理内存支持2D和3D的纹理读取操作,但编程可能没有那么容易
  • 下边给出一个通过纹理内存进行数组赋值的例子:
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
#define NUM_THREADS 10
#define N 10//纹理内存定义
texture <float, 1, cudaReadModeElementType> textureRef;
__global__ void gpu_texture_memory(int n, float *d_out)
{int idx = blockIdx.x*blockDim.x + threadIdx.x;if (idx < n) {float temp = tex1D(textureRef, float(idx));d_out[idx] = temp;}
}int main()
{//Calculate number of blocks to launchint num_blocks = N / NUM_THREADS + ((N % NUM_THREADS) ? 1 : 0);//Declare device pointerfloat *d_out;// allocate space on the device for the resultcudaMalloc((void**)&d_out, sizeof(float) * N);// allocate space on the host for the resultsfloat *h_out = (float*)malloc(sizeof(float)*N);//Declare and initialize host arrayfloat h_in[N];for (int i = 0; i < N; i++) {h_in[i] = float(i);}//Define CUDA ArraycudaArray *cu_Array;cudaMallocArray(&cu_Array, &textureRef.channelDesc, N, 1);//Copy data to CUDA Array,(0,0)表示从左上角开始cudaMemcpyToArray(cu_Array, 0, 0, h_in, sizeof(float)*N, cudaMemcpyHostToDevice);// bind a texture to the CUDA arraycudaBindTextureToArray(textureRef, cu_Array);//Call Kernel	gpu_texture_memory << <num_blocks, NUM_THREADS >> >(N, d_out);// copy result back to hostcudaMemcpy(h_out, d_out, sizeof(float)*N, cudaMemcpyDeviceToHost);printf("Use of Texture memory on GPU: \n");for (int i = 0; i < N; i++) {printf("Texture element at %d is : %f\n",i, h_out[i]);}free(h_out);cudaFree(d_out);cudaFreeArray(cu_Array);cudaUnbindTexture(textureRef);}
  • 纹理引用是通过 texture<> 类型的变量进行定义的,定义是的三个参数意思是:
texture <p1, p2, p3> textureRef;
p1: 纹理元素的类型
p2: 纹理引用的类型,可以是1D,2D,3D的
p3:读取模式,是个可选参数,用来说明是否要执行读取时候的自动类型转换
  • 一定要确保纹理引用被定义成全局静态变量,同时还要确保它不能作为参数传递给任何其他函数
  • cudaBindTextureToArray 函数将纹理引用和CUDA数组进行绑定
  • 运行结果如下:
    在这里插入图片描述
  • ------ end------

相关文章:

[7] CUDA之常量内存与纹理内存

CUDA之常量内存与纹理内存 1. 常量内存 NVIDIA GPU卡从逻辑上对用户提供了 64KB 的常量内存空间&#xff0c;可以用来存储内核执行期间所需要的恒定数据常量内存对一些特定情况下的小数据量的访问具有相比全局内存的额外优势&#xff0c;使用常量内存也一定程序上减少了对全局…...

python使用base加密解密

原理 base编码是一种加密解密措施&#xff0c;目前常用的有base16、base32和base64。其大致原理比较简单。 以base64为例&#xff0c;base64加密后共有64中字符。其加密过程是编码后将每3个字节作为一组&#xff0c;这样每组就有3*824位。将每6位作为一个单位进行编码&#xf…...

简述vue.mixin的使用场景和原理

Vue.mixin的使用场景 Vue.mixin是Vue的全局混入功能&#xff0c;它提供了一种非常灵活的方式来分发Vue组件中的可复用功能。使用Vue.mixin可以为Vue实例和组件添加全局的方法、属性、钩子函数等。具体的使用场景包括&#xff1a; 全局设置默认属性或方法&#xff1a;例如&…...

C# WPF入门学习(四)—— 按钮控件

上期介绍了WPF的实现架构和原理&#xff0c;之后我们开始来使用WPF来学习各种控件。 一、尝试插入一个按钮&#xff08;方法一&#xff09; 1. VS2019 在界面中&#xff0c;点击工具栏中的视图&#xff0c;在下拉菜单中选择工具箱。 至于编译器中的视图怎么舒服怎么来布置&am…...

大模型效能工具之智能CommitMessage

01 背景 随着大型语言模型的迅猛增长&#xff0c;各种模型在各个领域的应用如雨后春笋般迅速涌现。在研发全流程的效能方面&#xff0c;也出现了一系列贯穿全流程的提效和质量工具&#xff0c;比如针对成本较高的Oncall&#xff0c;首先出现了高质量的RAG助手&#xff1b;在开…...

PyQt6--Python桌面开发(33.QToolBar工具栏控件)

QToolBar工具栏控件...

node环境问题(无法加载文件D:\Software\Node.js\node_global\vue.ps1,因为在此系统上禁止运行脚本。)

问题&#xff1a;npm安装lerna显示安装成功&#xff0c;但是lerna -v的时候报错 解决步骤&#xff1a; 1、输入&#xff1a;Get-ExecutionPolicy 2、输入&#xff1a;Set-ExecutionPolicy -Scope CurrentUser&#xff08;有选项的选Y&#xff09; 3、输入&#xff1a;RemoteSi…...

位运算算法

位运算是计算机中常用的一种运算方法&#xff0c;它直接对二进制数的位进行操作。位运算主要包括按位与&#xff08;&&#xff09;、按位或&#xff08;|&#xff09;、按位异或&#xff08;^&#xff09;、按位取反&#xff08;~&#xff09;、左移&#xff08;<<&a…...

重学java 45.多线程 下 总结 定时器_Timer

人开始反向思考 —— 24.5.26 定时器_Timer 1.概述:定时器 2.构造: Timer() 3.方法: void schedule(TimerTask task, Date firstTime, long period) task:抽象类,是Runnable的实现类 firstTime:从什么时间开始执行 period:每隔多长时间执行一次…...

MongoDB(介绍,安装,操作,Springboot整合MonggoDB)

目录 MongoDB 1 MongoDB介绍 MongoDB简介 MongoDB的特点 MongoDB使用场景 小结 2 MongoDB安装 安装MongoDB 连接MongoDB MongoDB逻辑结构 MongoDB数据类型 小结 3 MongoDB操作 操作库和集合 操作文档-增删改 操作文档-查询 MongoDB索引 小结 4 SpringBoot整合…...

【数字移动通信】期末突击

文章目录 复习题一.简答题1、常用的移动通信系统有哪些?2、分别列出1G,2G,3G,4G的典型系统或标准&#xff1f;3、移动通信信道的基本特征&#xff1f;4、电波传播预测模型是用来计算什么量的&#xff0c;在选择传播预测模型时&#xff0c;主要考虑哪些因素&#xff1f;5、什么…...

数据库(5)——DDL 表操作

表查询 先要进入到某一个数据库中才可使用这些指令。 SHOW TABLES; 可查询当前数据库中所有的表。 表创建 CREATE TABLE 表名( 字段1 类型 [COMMENT 字段1注释] ...... 字段n 类型 [COMMENT 字段n注释] )[COMMENT 表注释]; 例如&#xff0c;在student数据库里创建一张studen…...

【Java EE】网络协议——HTTP协议

目录 1.HTTP 1.1HTTP是什么 1.2理解“应用层协议” 1.3理解HTTP协议的工作过程 2.HTTP协议格式 2.1抓包工具的使用 2.2抓包工具的原理 2.3抓包结果 3.协议格式总结 1.HTTP 1.1HTTP是什么 HTTP&#xff08;全称为“超文本传输协议”&#xff09;是一种应用非常广泛的应…...

Docker提示某网络不存在如何解决,添加完网络之后如何删除?

Docker提示某网络不存在如何解决&#xff1f; 创建 Docker 网络 假设现在需要创建一个名为my-mysql-network的网络 docker network create my-mysql-network运行容器 创建网络之后&#xff0c;再运行 mysqld_exporter 容器。完整命令如下&#xff1a; docker run -d -p 9104…...

C++ 红黑树

目录 1.红黑树的概念 2.红黑树的性质 3.红黑树节点的定义 4.红黑树的插入操作 5.数据测试 1.红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上各个…...

PTA 6-4 配对问题

许多大学生报名参与大运会志愿者工作。其中运动场引导员需要男女生组队&#xff0c;每组一名男生加一名女生&#xff0c;男生和女生各自排成一队&#xff0c;依次从男队和女队队头各出一人配成小组&#xff0c;若两队初始人数不同&#xff0c;则较长那一队未配对者调到其他志愿…...

sklearn基础教程

scikit-learn是一个用于机器学习的Python库&#xff0c;提供了多种机器学习的方法和模型&#xff0c;以及数据预处理、特征选择、模型评估等功能。它简化了机器学习流程&#xff0c;并且具有易于使用和灵活的特点。 本教程将介绍sklearn的基础知识和常用功能&#xff0c;帮助你…...

MySQL入门学习-查询进阶.别名

别名&#xff08;Alias&#xff09;是为数据库中的表、列或表达式赋予的一个临时名称。使用别名可以使查询结果更具可读性&#xff0c;并且在复杂的查询中更方便地引用和处理数据。 在 MySQL 中&#xff0c;别名可以通过 AS 关键字来定义&#xff0c;例如&#xff1a; SELECT…...

【Rust日报】嵌入式 Rust:一份简化指南

EvilHelix 编辑器 EvilHelix 是一个采用 Vim 风格的模态编辑器&#xff0c;旨在提供快速且高效的编辑体验。它是 Helix 编辑器的一个分支&#xff0c;增加了 Vim binding&#xff0c;同时积极同步上游的特性&#xff0c;兼备了 Vim 和 Hexli 的优点&#xff1a; Vim 风格的模态…...

Web课外练习9

<!DOCTYPE html> <html> <head><meta charset"utf-8"><title>邮购商品业务</title><!-- 引入vue.js --><script src"./js/vue.global.js" type"text/javascript"></script><link rel&…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...

GeoServer发布PostgreSQL图层后WFS查询无主键字段

在使用 GeoServer&#xff08;版本 2.22.2&#xff09; 发布 PostgreSQL&#xff08;PostGIS&#xff09;中的表为地图服务时&#xff0c;常常会遇到一个小问题&#xff1a; WFS 查询中&#xff0c;主键字段&#xff08;如 id&#xff09;莫名其妙地消失了&#xff01; 即使你在…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

LeetCode 0386.字典序排数:细心总结条件

【LetMeFly】386.字典序排数&#xff1a;细心总结条件 力扣题目链接&#xff1a;https://leetcode.cn/problems/lexicographical-numbers/ 给你一个整数 n &#xff0c;按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。…...

今日行情明日机会——20250609

上证指数放量上涨&#xff0c;接近3400点&#xff0c;个股涨多跌少。 深证放量上涨&#xff0c;但有个小上影线&#xff0c;相对上证走势更弱。 2025年6月9日涨停股主要行业方向分析&#xff08;基于最新图片数据&#xff09; 1. 医药&#xff08;11家涨停&#xff09; 代表标…...

安全领域新突破:可视化让隐患无处遁形

在安全领域&#xff0c;隐患就像暗处的 “幽灵”&#xff0c;随时可能引发严重事故。传统安全排查手段&#xff0c;常常难以将它们一网打尽。你是否好奇&#xff0c;究竟是什么神奇力量&#xff0c;能让这些潜藏的隐患无所遁形&#xff1f;没错&#xff0c;就是可视化技术。它如…...