当前位置: 首页 > news >正文

STM32 USART的字符编码(发送器的实现逻辑)

目录

概述

1 字符编码

1.1 USART 字符说明

1.2 字长编程

2 发送器

2.1 字符发送

2.2 可配置的停止位

2.3 配置停止位方法

3 单字节通信

4 中断字符

5 空闲字符


概述

本文主要讲述STM32 USART的发送端功能实现的原理,包括字节编码长度,发送器的波形特点,发送字节bit位的波形的变化特点,和中断相关的配置参数等内容。

1 字符编码

任何 USART 双向通信均需要至少两个引脚:接收数据输入引脚 (RX) 和发送数据引脚输出 (TX):

RX: 接收数据输入引脚就是串行数据输入引脚。过采样技术可区分有效输入数据和噪声从而用于恢复数据。


TX: 发送数据输出引脚。如果关闭发送器,该输出引脚模式由其 I/O 端口配置决定。如果使
能了发送器但没有待发送的数据,则 TX 引脚处于高电平。在单线和智能卡模式下,该 I/O用于发送和接收数据( USART 电平下,随后在 SW_RX 上接收数据)。

1.1 USART 字符说明

可通过对 USART_CR1 寄存器中的 M 位进行编程来选择 8 位或 9 位的字长。

TX引脚的电平:

起始位电平:

TX 引脚在起始位工作期间处于低电平状态

停止位电平:

停止位工作期间处于高电平状态。空闲字符可理解为整个帧周期内电平均为“1”(停止位的电平也是“1”),该字符后是下一个数据帧的起始位。

停止字符:

在一个帧周期内接收到的电平均为“0”。发送器在中断帧的末尾插入 1或 2 个停止位(逻辑“1”位)以确认起始位。

空闲字符:

整个帧周期内电平均为“1”(停止位的电平也是“1”),该字符后是下一个数据帧的起始位。

发送和接收由通用波特率发生器驱动,发送器和接收器的使能位分别置 1 时将生成相应的发送时钟和接收时钟。

1.2 字长编程

控制寄存器 1 (USART_CR1)
Control register 1
偏移地址: 0x0C
复位值: 0x0000 0000

位 12 M:字长 (Word length)
该位决定了字长。该位由软件置 1 或清零。
0: 1 起始位, 8 数据位, n 停止位
1: 1 起始位, 9 数据位, n 停止位


注意:

在数据传输(发送和接收)期间不得更改 M 位

1)9 位字长( M 位置 1), 1 个停止位

2)8 位字长( M 位复位), 1 个停止位

2 发送器

发送器可发送 8 位或 9 位的数据字,具体取决于 M 位的状态。发送使能位 (TE) 置 1 时,发送移位寄存器中的数据在 TX 引脚输出,相应的时钟脉冲在 SCLK 引脚输出。

2.1 字符发送

USART 发送期间,首先通过 TX 引脚移出数据的最低有效位。该模式下, USART_DR 寄存器的缓冲区 (TDR) 位于内部总线和发送移位寄存器之间。每个字符前面都有一个起始位,其逻辑电平在一个位周期内为低电平。字符由可配置数量的停止位终止。

USART 支持以下停止位: 0.5、 1、 1.5 和 2 个停止位。

注意:

数据发送期间不应复位 TE 位。发送期间复位 TE 位会冻结波特率计数器,从而将损坏 TX 引
脚上的数据。当前传输的数据将会丢失。使能 TE 位后,将会发送空闲帧。

2.2 可配置的停止位

可以在控制寄存器 2 的位 13 和 位 12 中编程将随各个字符发送的停止位的数量。
● 1 个停止位: 这是停止位数量的默认值。
● 2 个停止位: 正常 USART 模式、单线模式和调制解调器模式支持该值。
● 0.5 个停止位: 在智能卡模式下接收数据时使用。
● 1.5 个停止位: 在智能卡模式下发送和接收数据时使用

空闲帧发送将包括停止位

m = 0 时,中断发送是 10 个低电平位,然后是已配置数量的停止位; m = 1 时,中断发送是11 个低电平位,然后是已配置数量的停止位。无法传送长中断(中断长度大于 10/11 个低电平位)。

可配置的停止位的波形如下:

2.3 配置停止位方法

实现步骤:

1. 通过向 USART_CR1 寄存器中的 UE 位写入 1 使能 USART。
2. 对 USART_CR1 中的 M 位进行编程以定义字长。
3. 对 USART_CR2 中的停止位数量进行编程。
4. 如果将进行多缓冲区通信,请选择 USART_CR3 中的 DMA 使能 (DMAT)。按照多缓冲通信中的解释说明配置 DMA 寄存器。
5. 使用 USART_BRR 寄存器选择所需波特率。
6. 将 USART_CR1 中的 TE 位置 1 以便在首次发送时发送一个空闲帧。

7. 在 USART_DR 寄存器中写入要发送的数据(该操作将清零 TXE 位)。为每个要在单缓冲区模式下发送的数据重复这一步骤。
8. 向 USART_DR 寄存器写入最后一个数据后,等待至 TC=1。这表明最后一个帧的传送完成。禁止 USART 或进入暂停模式时需要此步骤,以避免损坏最后一次发送。

3 单字节通信

始终通过向数据寄存器写入数据来将 TXE 位清零。
TXE 位由硬件置 1,它表示:

● 数据已从 TDR 移到移位寄存器中且数据发送已开始。
● TDR 寄存器为空。
● USART_DR 寄存器中可写入下一个数据,而不会覆盖前一个数据。TXEIE 位置 1 时该标志位会生成中断。

1)发送时,要传入 USART_DR 寄存器的写指令中存有 TDR 寄存器中的数据,该数据将在当前发送结束时复制到移位寄存器中。

2)未发送时,要传入 USART_DR 寄存器的写指令直接将数据置于移位寄存器中,数据发送开始时, TXE 位立即置 1。

3)如果帧已发送(停止位后)且 TXE 位置 1, TC 位将变为高电平。如果 USART_CR1 寄存器中的 TCIE 位置 1,将生成中断。

向 USART_DR 寄存器中写入最后一个数据后,必须等待至 TC=1,之后才可禁止 USART或使微控制器进入低功率模式(请参见图 :发送时的 TC/TXE 行为)。

TC 位通过以下软件序列清零:
1. 从 USART_SR 寄存器读取数据
2. 向 USART_DR 寄存器写入数据

4 中断字符

将 SBK 位置 1 将发送一个中断字符。中断帧的长度取决于 M 位 。
如果 SBK 位置“1”,当前字符发送完成后,将在 TX 线路上发送一个中断字符。中断字符发送完成时(发送中断字符的停止位期间),该位由硬件复位。 USART 在上一个中断帧的末尾插入一个逻辑“1”位,以确保识别下个帧的起始位。

注意:

如果软件在中断发送开始前对 SBK 位进行了复位,将不会发送中断字符。对于两个连续的中断,应在上一个中断的停止位发送完成后将 SBK 位置 1。

5 空闲字符

将 TE 位置 1 会驱动 USART 在第一个数据帧之前发送一个空闲帧。

控制寄存器 1 (USART_CR1)
Control register 1
偏移地址: 0x0C
复位值: 0x0000 0000

位 3 TE:发送器使能 (Transmitter enable)
该位使能发送器。该位由软件置 1 和清零。
0:禁止发送器
1:使能发送器


注意:

1:除了在智能卡模式下以外,传送期间 TE 位上的“0”脉冲(“0”后紧跟的是“1”)会在当前字的后面发送一个报头(空闲线路)。
2:当 TE 置 1 时,在发送开始前存在 1 位的时间延迟。 

相关文章:

STM32 USART的字符编码(发送器的实现逻辑)

目录 概述 1 字符编码 1.1 USART 字符说明 1.2 字长编程 2 发送器 2.1 字符发送 2.2 可配置的停止位 2.3 配置停止位方法 3 单字节通信 4 中断字符 5 空闲字符 概述 本文主要讲述STM32 USART的发送端功能实现的原理,包括字节编码长度,发送器…...

[市赛2024-X2]自习室

Description 临近期末考试,自习室的学生来来往往。 这可忙坏了管理自习室的大爷,他随时准备开关灯。 自习室只要有学生来,就需要开灯。一开始没有学生来之前灯是关闭的。 周日这一天共有 n 位同学来自习,第 i 个同学将在时间 …...

Spring ----> IOC

文章目录 一、 Spring 是一个包含众多工具的IoC容器二、 什么是IOC以及好处三、 如何实现loc思想四、Spring提供的实现loC的方法 --- 类注解方法注解4.1 类注解类注解概念介绍类注解的使用 4.2 方法注解Bean 一、 Spring 是一个包含众多工具的IoC容器 场景解析:首先…...

AI重塑保险业未来:机器学习在风险评估、欺诈检测与客户服务中的深度应用

🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…...

某某某加固系统分析

某某某加固系统内核so dump和修复: 某某某加固系统采取了内外两层native代码模式,外层主要为了保护内层核心代码,从分析来看外层模块主要用来反调试,释放内层模块,维护内存模块的某些运行环境达到防止分离内外模块&am…...

嵌入式之音频基础知识

声音特性 1、响度:人主观上感觉声音的大小(俗称音量),由“振幅”和人离声源的距离决定,振幅越大响度越大,人和声源的距离越小,响度越大; 2、音调:声音的高低&#xff0…...

如何做好软件项目的沟通管理

如何做好软件项目的沟通管理 软件项目的沟通管理是确保项目信息在团队成员、利益相关者和相关群体之间有效流通的过程。良好的沟通是项目成功的关键,在项目开始时,需要制定详细的沟通计划,包括沟通的目的、对象、内容、频率和渠道等信息。 …...

linmux

了了了了了了了了了了了了了了...

Vue3学习-vue-router之路由传参

传参方案一&#xff1a;RouterLink 字符串 //传值 <RouterLink to"/page?a1&b2">{{ RouterLink 字符串传参 }}</RouterLink> //取值 import { toRefs } from vue import { useRoute } from vue-router const { query} toRefs(useRoute()) console.…...

ubuntu20.04 10分钟搭建无延迟大疆无人机多线程流媒体服务器

1.使用效果 无人机画面 2.服务器视频端口 3.使用教程 3.1.下载ubuntu对应软件包&#xff1a;系统要求ubuntu16以上 3.2修改端口&#xff08;config.xml文件&#xff09; 3.3启动服务 目录下输入&#xff1a;终端启动&#xff1a;./smart_rtmpd 后台启动&#xff1a;nohup ./…...

hugging face笔记:PEFT

1 介绍 PEFT (Parameter-Efficient Fine Tuning) 方法在微调时冻结预训练模型参数&#xff0c;并在其上添加少量可训练的参数&#xff08;称为适配器&#xff09;这些适配器被训练用来学习特定任务的信息。这种方法已被证明在内存效率和计算使用上非常高效&#xff0c;同时能产…...

作业5.26

定义一些常量和数据结构来存储用户信息和消息。 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h>#define MAX_USERS 100 // 最大用户数 #define MAX_M…...

银河麒麟服务器系统xshell连接之后主动断开,报错socket error event:32 Error:10053问题分析

银河麒麟服务器系统xshell连接之后主动断开&#xff0c;报错socket error event&#xff1a;32 Error&#xff1a;10053问题分析 一 问题描述二 系统环境三 问题分析3.1 与正常机器对比sshd文件内容以及文件权限3.2 检查同网段内是否配置多个相同的IP地址 四 后续建议 一 问题描…...

蓝桥杯算法心得——李白打酒(加强版)

大家好&#xff0c;我是晴天学长&#xff0c;记忆化搜索&#xff0c;找到技巧非常重要&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 2) .算法思路 1.memo三维表示记录的结果 3&#xff09;.算法步骤 1…...

java练习2

题目要求 创建一个Color枚举类有RED,BLUE,BLACK,YELLOW,GREEN这五个枚举值/对象Color有三个属性redValue&#xff0c;greenValue&#xff0c;blueValue创建构造方法&#xff0c;参数包括这三个属性每个枚举值都要给这三个属性赋值&#xff0c;三个属性对应的值分别是red&#…...

【安装笔记-20240523-Windows-安装测试 ShareX】

安装笔记-系列文章目录 安装笔记-20240523-Windows-安装测试 ShareX 文章目录 安装笔记-系列文章目录安装笔记-20240523-Windows-安装测试 ShareX 前言一、软件介绍名称&#xff1a;ShareX主页官方介绍 二、安装步骤测试版本&#xff1a;16.1.0下载链接功能界面 三、应用场景屏…...

2024年150道高频Java面试题(七十一)

141. spring cloud 的核心组件有哪些&#xff1f; Spring Cloud 是一个基于Spring Boot实现的微服务架构开发工具集&#xff0c;它为微服务架构中的诸多问题提供了解决方案。Spring Cloud的核心组件主要包括以下这些&#xff1a; Spring Cloud Config&#xff1a;提供服务器和…...

【深度学习】2.单层感知机

目标&#xff1a; 实现一个简单的二分类模型的训练过程&#xff0c;通过模拟数据集进行训练和优化&#xff0c;训练目标是使模型能够根据输入特征正确分类数据。 演示: 1.通过PyTorch生成了一个模拟的二分类数据集&#xff0c;包括特征矩阵data_x和对应的标签数据data_y。标签…...

JS经常碰见的报错问题

语法错误&#xff1a;由于 JavaScript 是一种动态语言&#xff0c;因此编写代码期间可能会出现语法错误。这可能包括拼写错误、漏掉分号或括号等问题。 作用域问题&#xff1a;JavaScript 中存在全局作用域和局部作用域的概念&#xff0c;有时候可能会出现变量作用域混乱导致的…...

纯前端实现截图功能

纯前端实现截图功能 一、插件二、主要代码 一、插件 一、安装html2canvas、vue-cropper npm i html2canvas --save //用于将指定区域转为图片 npm i vue-cropper -S //将图片进行裁剪二、在main.js注册vue-cropper组件 import VueCropper from vue-cropper Vue.use(VueCropper…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...