当前位置: 首页 > news >正文

【机器学习300问】97、机器学习中哪些是凸优化问题,哪些是非凸优化问题?

        在机器学习的领域中,多数模型的参数估计问题实质上可以转化为优化问题。鉴于机器学习模型的多样性,不同的模型会对应着不同的损失函数,进而形成各具特色的优化问题。了解优化问题的形式和特点,对于提升我们求解模型参数的效率和准确性至关重要,从而确保机器学习模型能够达成预期的学习目标。

一、什么是凸优化问题?

(1)定义

        在机器学习中,凸优化问题是指那些目标函数为凸函数,并且约束条件(如果有)定义的区域也为凸集的问题。

        这类问题有很好的性质,比如全局最优解是唯一的,并且任何局部最优解都是全局最优解,这使得它们可以通过一些高效的优化算法如梯度下降、牛顿法或拟牛顿法等来求解。

(2)凸函数

        凸函数指的是在其定义域内任意两点连线上的值总是处于这两点在函数上对应值的连线之上(或等于)的函数。

图中 lambda=1/2

用数学公式凸函数:

        对于一个定义在实数集合上的函数 f : [a, b] \to \mathbb{R},如果对于所有x_1, x_2 \in [a, b]和任意\lambda \in [0, 1],下面的不等式始终成立:

f(\lambda x_1 + (1 - \lambda) x_2) \leq \lambda f(x_1) + (1 - \lambda) f(x_2)

那么,函数f就是一个凸函数。 这个定义意味着,如果你取定义域内的任意两点x_1x_2,以及这两点之间的任意加权平均\lambda x_1 + (1 - \lambda) x_2,函数在这个加权平均上的值不大于这两点对应函数值的加权平均。

(3)凸集

        凸集是欧几里得空间中的一个子集,如果集合内任意两点间的线段完全包含在这个集合内,则该集合是凸集。

        想象你有一块没有洞,边界也不弯曲到内部的物体,如果你任意选择该物体内的两点并连接它们,这根连线完全位于物体内部,那么这个物体就是一个凸集合的形状实例。

        用数学语言来表达,一个集合C是凸集,如果对于集合中的任意两点x_1, x_2 \in C,下面的条件对所有\lambda满足0 \leq \lambda \leq 1都成立:\lambda x_1 + (1 - \lambda) x_2 \in C

二、哪些是机器学习中的凸优化问题?

  1. 线性回归:当使用均方误差作为损失函数时,线性回归成为一个凸优化问题。
  2. 逻辑回归:在 logistic 函数下的最大似然估计同样形成一个凸优化问题。
  3. 支持向量机(SVM,线性核):硬间隔或软间隔的支持向量机,当使用线性核函数时,目标是最小化 hinge 损失或拉格朗日函数,这是一个凸优化问题。
  4. 最小二乘问题:在没有额外约束的情况下,是最基本的凸优化问题之一。

三、哪些是机器学习中的非凸优化问题?

        非凸优化问题指的是目标函数不是凸函数,或者约束条件定义的区域不是凸集的情况。在这些情况下,寻找全局最优解更加困难,因为可能存在多个局部最优解或鞍点

  1. 非线性支持向量机:使用非线性核函数(如RBF核)时,虽然原始问题转换到特征空间后可能是凸的,但在原始参数空间中的问题是非凸的。
  2. 神经网络:多层神经网络的损失函数通常是非凸的,尤其是当使用激活函数如ReLU时,这导致了优化问题的复杂性。
  3. 主成分分析(PCA):尽管PCA的目标函数(通常是数据协方差矩阵的迹减去各个特征值之和)是凸的,但其约束(保持变换后的数据方差最大化同时保持正交投影矩阵)形成了一个非凸集合,因此整体问题被视为非凸优化问题。
  4. 非负矩阵分解:当限制因子矩阵中的元素非负时,问题变为非凸。

相关文章:

【机器学习300问】97、机器学习中哪些是凸优化问题,哪些是非凸优化问题?

在机器学习的领域中,多数模型的参数估计问题实质上可以转化为优化问题。鉴于机器学习模型的多样性,不同的模型会对应着不同的损失函数,进而形成各具特色的优化问题。了解优化问题的形式和特点,对于提升我们求解模型参数的效率和准…...

两种盒模型

在CSS中,有两种主要的盒模型(Box Model),它们决定了元素的尺寸计算方式: 标准盒模型(W3C Box Model) 在标准盒模型中,元素的总宽度和总高度分别由以下几个部分组成: Cont…...

【C++】类型转换

目录 前言一、C语言中的类型转换二、为什么C需要四种类型转换三、C强制类型转换3.1 static_cast3.2 reinterpret_cast3.3 const_cast3.4 dynamic_cast3.5 RTTI 前言 本篇文章讲解的是C中对于C语言类型转换做出的一些更好的规范问题,同时也保证了在一些特殊场景下进…...

Redis RDB 持久化问题

前言 Redis 是内存数据库,它将自己的数据储存在内存里面,如果不想办法将储存在内存中的数据保存到磁盘里面,那么一旦服务器进程退出,服务器中的数据也就没了。 因此,Redis 提供了 RDB 持久化功能,这个功能…...

windows 下nginx常用命令

1、启动,目录cmd,后 start nginx.exe 2.重新加载 nginx -s reload 3.查看状态 tasklist /fi “imagename eq nginx.exe” 4.关闭 nginx -s quit...

xjoi题库一级1-10段题解(c语言版)

xjoi题库一级一段 xjoi题库一级二段 xjoi题库一级三段 xjoi题库一级四段 xjoi题库一级五段...

1.int 与 Integer 的简单区别

蓝桥杯刷题从此开始: 第一题就是两个数的和,个人看来主要考察 int与integer 的区别; 这是我提交的答案,竟然会报错: import java.util.*; //输入A、B,输出AB。 class add {public static void main(String …...

单片机原理及技术(二)—— AT89S51单片机(一)(C51编程)

目录 一、AT89S51单片机的片内硬件结构 二、AT89S51的引脚功能 2.1 电源及时钟引脚 2.2 控制引脚 2.3 并行 I/O口引脚 三、AT89S51的CPU 3.1 运算器 3.1.1 算术逻辑单元(ALU) 3.1.2 累加器A 3.1.3 程序状态字寄存器(PSW&#xff09…...

某方protobuf闲谈

问题 当我们去看某方的时候,搜索了关键词svm,然后通过抓包查看,请求的Request Payload是一串看不懂的乱码,并且返回的数据也大部分是乱码 观察请求的Content-Type是application/grpc-web+proto,没错数据的传输是protobuf的形式了 protobuf的相关概念和原理,网上有很多教…...

专为汽车内容打造的智能剪辑解决方案

汽车内容创作已成为越来越多车主和汽车爱好者热衷的活动。然而,如何高效、便捷地将行车途中的精彩瞬间转化为高质量的视频作品,一直是困扰着广大用户的一大难题。美摄科技凭借其深厚的视频处理技术和智能分析能力,推出了专为汽车内容记录而生…...

【C语言】二叉树的实现

文章目录 前言⭐一、二叉树的定义🚲二、创建二叉树🎡三、二叉树的销毁🎉四、遍历二叉树1. 前序遍历2. 中序遍历3. 后序遍历4. 层序遍历 🌲五、二叉树的计算1. 计算二叉树结点个数2. 计算二叉树叶子结点的个数3. 计算二叉树的深度4…...

在ubuntu22.04里网站源码连不上mysql数据库

在ubuntu22.04里网站源码连不上mysql数据库。后来找到了原因。 连不上的时候有报错信息: ERROR 1698 (28000): Access denied for user rootlocalhost 用在网上搜索该报错信息,找到了两篇有用的文章,用这两篇文章里的处理方法解决了问题。 …...

博客说明 5/12~5/24【个人】

博客说明 5/12~5/24【个人】 前言版权博客说明 5/12~5/24【个人】对比最后 前言 2024-5-24 13:39:23 对我在2024年5月12日到5月24日发布的博客做一下简要的说明 以下内容源自《【个人】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作…...

豆瓣电影后端设计

sql脚本 -- douban.tags_encode definitionCREATE TABLE tags_encode (id bigint NOT NULL AUTO_INCREMENT COMMENT 自增主键,tag varchar(100) NOT NULL COMMENT tag中文名,tag_encode varchar(100) NOT NULL COMMENT tag转encode,type varchar(100) NOT NULL DEFAULT movie …...

【深度学习】第1章

概论: 机器学习是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析,其基础主要是归纳和统计。 深度学习是一种实现机器学习的技术,是机器学习重要的分支。其源于人工神经网络的研究。深度学习的模型结构是一种含多隐层的神经…...

Vue3实战笔记(37)—粒子特效登录页面

文章目录 前言一、粒子特效登录页总结 前言 上头了&#xff0c;再来一个粒子特效登录页面。 一、粒子特效登录页 登录页&#xff1a; <template><div><vue-particles id"tsparticles" particles-loaded"particlesLoaded" :options"…...

解锁无限可能:JavaScript与【机器学习】的浪漫邂逅

解锁无限可能&#xff1a;JavaScript与机器学习的浪漫邂逅 在人工智能和大数据日益盛行的今天&#xff0c;机器学习已成为我们理解、分析和处理数据的强大工具。而JavaScript&#xff0c;作为前端开发的主流语言&#xff0c;其灵活的特性和广泛的应用场景也让我们对其充满了期…...

【Linux】$()中的内容与不加$()时有什么区别

$()中的内容与不加$()有什么区别&#xff0c;例如$(/usr/local/hadoop/bin/hadoop classpath)与/usr/local/hadoop/bin/hadoop classpath两者有何区别&#xff1f;&#xff1f;&#xff1f; 关于这个问题&#xff0c;笔者建议可以参考如下文章&#xff1a; Linux—shell中$((…...

2024最新前端面试八股文【基础篇293题】

⼀、HTML、HTTP、web综合问题 1 前端需要注意哪些SEO 2 <img> 的 title 和 alt 有什么区别 3 HTTP的⼏种请求⽅法⽤途 4 从浏览器地址栏输⼊url到显示⻚⾯的步骤 5 如何进⾏⽹站性能优化 6 HTTP状态码及其含义 7 语义化的理解 8 介绍⼀下你对浏览器内核的理解 9 …...

【NumPy】关于numpy.median()函数,看这一篇文章就够了

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...