当前位置: 首页 > news >正文

字节跳动(校招)算法原题

大模型"价格战"越演越烈

昨天的 文章 提到,自从 5 月 15 号,字节跳动发布了击穿行业底价的豆包大模型后,各大厂家纷纷跟进降价,而且都不是普通降价,要么降价 90% 以上,要么直接免费。

今天是豆包发布会过去的第 8 天,价格战还在继续,且越演越烈。

腾讯混元大模型宣布全面降价,其中主力模型之一的混元-lite更是从即日起免费使用。

科大讯飞也宣布讯飞星火 API 永久免费开放。

而在昨天(5 月 22 号)举办的 Baichuan 4 模型产品发布会上,百川智能创始人兼 CEO 王小川也点评了最近的"大模型价格战",其声称:"在中国市场,API 服务其实对创业公司是走不通的"。

...

回归主线。

来一道和「字节跳动(校招)」相关的算法原题。

题目描述

平台:LeetCode

题号:886

给定一组 n 人(编号为 1, 2, ..., n), 我们想把每个人分进任意大小的两组。

每个人都可能不喜欢其他人,那么他们不应该属于同一组。

给定整数 n 和数组 dislikes ,其中   ,表示不允许将编号为  和   的人归入同一组。

当可以用这种方法将所有人分进两组时,返回 true;否则返回 false

示例 1:

输入:n = 4, dislikes = [[1,2],[1,3],[2,4]]

输出:true

解释:group1 [1,4], group2 [2,3]

示例 2:

输入:n = 3, dislikes = [[1,2],[1,3],[2,3]]

输出:false

示例 3:

输入:n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]

输出:false

提示:

  • dislikes 中每一组都 不同

染色法

无论是从题目描述和对点边的描述,这都是一道「染色法判定二分图」的模板题。

为了方便,我们令 dislikesds,将其长度记为

题目要求我们将 个点划分到两个集合中,同时我们将每个 看做无向边的话,可知集合内部无边,即所有的边必然横跨两个集合之间。

使用 进行建图,并将两个将要划分出的两个集合分别记为 AB,我们可以采用「染色」的方式,尝试将所有点进行划分。

构建一个与点数相等的数组 color,我们人为规定划分到集合 A 的点满足 ,划分到集合 B 的点满足 ,起始有 ,代表该点尚未被划分。

随后我们可以实现 DFS 函数为 boolean dfs(int u, int cur) 含义为尝试将点 ucur 色。根据定义可知,我们除了需要 color[u] = cur 以外,还需要遍历点 u 的所有出边(处理其邻点,将其划分到另一集合上),若在处理过程中发生冲突,则返回 false,若能顺利染色则返回 true

由于我们固定了颜色编号为 12,因此 cur 的对立色可统一为 3 - cur

最终,我们根据能否给所有点染色成功来决定答案。

Java 代码:

class Solution {
    int N = 2010, M = 2 * 10010;
    int[] he = new int[N], e = new int[M], ne = new int[M], color = new int[N];
    int idx;
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    boolean dfs(int u, int cur) {
        color[u] = cur;
        for (int i = he[u]; i != -1; i = ne[i]) {
            int j = e[i];
            if (color[j] == cur) return false;
            if (color[j] == 0 && !dfs(j, 3 - cur)) return false;
        }
        return true;
    }
    public boolean possibleBipartition(int n, int[][] ds) {
        Arrays.fill(he, -1);
        for (int[] info : ds) {
            int a = info[0], b = info[1];
            add(a, b); add(b, a);
        }
        for (int i = 1; i <= n; i++) {
            if (color[i] != 0continue;
            if (!dfs(i, 1)) return false;
        }
        return true;
    }
}

C++ 代码:

class Solution {
public:
    int he[2010], e[2 * 10010], ne[2 * 10010], color[2010], idx = 0;
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    bool dfs(int u, int cur) {
        color[u] = cur;
        for (int i = he[u]; i != -1; i = ne[i]) {
            int j = e[i];
            if (color[j] == cur) return false;
            if (color[j] == 0 && !dfs(j, 3 - cur)) return false;
        }
        return true;
    }
    bool possibleBipartition(int n, vector<vector<int>>& ds) {
        fill(he, he + n + 10-1);
        for (const auto& info : ds) {
            int a = info[0], b = info[1];
            add(a, b); add(b, a);
        }
        for (int i = 1; i <= n; i++) {
            if (color[i] != 0continue;
            if (!dfs(i, 1)) return false;
        }
        return true;
    }
};

Python 代码:

class Solution:
    def possibleBipartition(self, n: int, ds: List[List[int]]) -> bool:
        N, M = 201020010
        he, e, ne, color = [-1] * N, [0] * M, [0] * M, [0] * N
        idx = 0
        def add(a, b):
            nonlocal idx
            e[idx], ne[idx], he[a] = b, he[a], idx
            idx += 1
        def dfs(u, cur):
            color[u] = cur
            i = he[u]
            while i != -1:
                j = e[i]
                if color[j] == cur:
                    return False
                if color[j] == 0 and not dfs(j, 3 - cur):
                    return False
                i = ne[i]
            return True
        for info in ds:
            a, b = info[0], info[1]
            add(a, b)
            add(b, a)
        for i in range(1, n + 1):
            if color[i] != 0:
                continue
            if not dfs(i, 1):
                return False
        return True

TypeScript 代码:

function possibleBipartition(n: number, ds: number[][]): boolean {
    const N = 2010, M = 2 * 10010
    const he = new Array<number>(N).fill(-1), e = new Array<number>(M).fill(0), ne = new Array<number>(M).fill(0), color = new Array<number>(N).fill(0)
    let idx = 0
    function add(a: number, b: number): void {
        e[idx] = b
        ne[idx] = he[a]
        he[a] = idx++
    }
    function dfs(u: number, cur: number): boolean {
        color[u] = cur
        for (let i = he[u]; i != -1; i = ne[i]) {
            const j = e[i];
            if (color[j] == cur) return false
            if (color[j] == 0 && !dfs(j, 3 - cur)) return false
        }
        return true
    }
    for (const info of ds) {
        const a = info[0], b = info[1]
        add(a, b); add(b, a)
    }
    for (let i = 1; i <= n; i++) {
        if (color[i] != 0continue
        if (!dfs(i, 1)) return false
    }
    return true
}
  • 时间复杂度:
  • 空间复杂度:

反向点 + 并查集

我们知道对于 而言,点 a 和点 b 必然位于不同的集合中,同时由于只有两个候选集合,因此这样的关系具有推断性:即对于 可知 ac 位于同一集合。

因此,我们可以对于每个点 x 而言,建议一个反向点 x + n:若点 x 位于集合 A 则其反向点 x + n 位于集合 B,反之同理。

基于此,我们可以使用「并查集」维护所有点的连通性:边维护变检查每个 的联通关系,若 联通,必然是其反向点联通所导致,必然是此前的其他 导致的关系冲突,必然不能顺利划分成两个集合,返回 false,否则返回 true

Java 代码:

class Solution {
    int[] p = new int[4010];
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
    void union(int a, int b) {
        p[find(a)] = p[find(b)];
    }
    boolean query(int a, int b) {
        return find(a) == find(b);
    }
    public boolean possibleBipartition(int n, int[][] ds) {
        for (int i = 1; i <= 2 * n; i++) p[i] = i;
        for (int[] info : ds) {
            int a = info[0], b = info[1];
            if (query(a, b)) return false;
            union(a, b + n); union(b, a + n);
        }
        return true;
    }
}

C++ 代码:

class Solution {
public:
    vector<int> p;
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
    void unionp(int a, int b) {
        p[find(a)] = p[find(b)];
    }
    bool query(int a, int b) {
        return find(a) == find(b);
    }
    bool possibleBipartition(int n, vector<vector<int>>& ds) {
        p.resize(2 * n + 1);
        for (int i = 1; i <= 2 * n; ++i) p[i] = i;
        for (const auto& info : ds) {
            int a = info[0], b = info[1];
            if (query(a, b)) return false;
            unionp(a, b + n);
            unionp(b, a + n);
        }
        return true;
    }
};

Python 代码:

class Solution:
    def possibleBipartition(self, n: int, ds: List[List[int]]) -> bool:
        p = [i for i in range(02 * n + 10)]
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]
        def union(a, b):
            p[find(a)] = p[find(b)]
        def query(a, b):
            return find(a) == find(b)
        for info in ds:
            a, b = info[0], info[1]
            if query(a, b):
                return False
            else:
                union(a, b + n)
                union(b, a + n)
        return True

TypeScript 代码:

function possibleBipartition(n: number, ds: number[][]): boolean {
    const p = new Array<number>(4010).fill(0)
    function find(x: number): number {
        if (p[x] != x) p[x] = find(p[x])
        return p[x]
    }
    function union(a: number, b: number): void {
        p[find(a)] = p[find(b)]
    }
    function query(a: number, b: number): boolean {
        return find(a) == find(b)
    }
    for (let i = 1; i <= 2 * n; i++) p[i] = i
    for (const info of ds) {
        const a = info[0], b = info[1]
        if (query(a, b)) return false
        union(a, b + n); union(b, a + n)
    }
    return true
}
  • 时间复杂度:
  • 空间复杂度:

最后

给大伙通知一下 📢 :

全网最低价 LeetCode 会员目前仍可用 ~

📅 年度会员:有效期加赠两个月!!; 季度会员:有效期加赠两周!!

🧧 年度会员:获 66.66 现金红包!!; 季度会员:获 22.22 现金红包!!

🎁 年度会员:参与当月丰厚专属实物抽奖(中奖率 > 30%)!!

专属链接:leetcode.cn/premium/?promoChannel=acoier

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

相关文章:

字节跳动(校招)算法原题

大模型"价格战"越演越烈 昨天的 文章 提到&#xff0c;自从 5 月 15 号&#xff0c;字节跳动发布了击穿行业底价的豆包大模型后&#xff0c;各大厂家纷纷跟进降价&#xff0c;而且都不是普通降价&#xff0c;要么降价 90% 以上&#xff0c;要么直接免费。 今天是豆包…...

前端面试题日常练-day39 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末。 1. 哪个jQuery方法用于设置元素的HTML内容&#xff1f; a) .html() b) .text() c) .val() d) .append() 2. 在jQuery中&#xff0c;以下哪个方法用于隐藏或显示一个元素&#xff1f; a) .toggle…...

心电信号降噪方法(滤波器/移动平均/小波等,MATLAB环境)

对于一个正常的、完整的心动周期&#xff0c;对应的心电图波形如下图所示&#xff0c;各个波形都对应着心脏兴奋活动的生理过程&#xff0c;包含P波&#xff0c;PR段&#xff0c;QRS波群&#xff0c;ST段&#xff0c;T波&#xff0c;U波。 &#xff08;1&#xff09;P波心电图中…...

Kubernetes 文档 / 概念 / 工作负载 / 管理工作负载

Kubernetes 文档 / 概念 / 工作负载 / 管理工作负载 此文档从 Kubernetes 官网摘录 中文地址 英文地址 你已经部署了你的应用并且通过 Service 将其暴露出来。现在要做什么&#xff1f; Kubernetes 提供了一系列的工具帮助你管理应用的部署&#xff0c;包括扩缩和更新。 组织…...

【第6章】SpringBoot整合Mybatis

文章目录 前言一、准备1. 版本要求2.安装3. 建表语句 二、案例1. mapper2.实体类3.测试类4.扫描5. 配置6. mapper.xml7.输出 总结 前言 MyBatis-Spring-Boot-Starter 可以帮助你更快地在 Spring Boot 之上构建 MyBatis 应用。 一、准备 1. 版本要求 MyBatis-Spring-Boot-Sta…...

vim常用指令——001

vim常用指令 Vim的命令模式常用操作一、定位移动光标二、行的基本操作【复制、粘贴、删除】三、查找、替换四、分屏命令 总结给大家总结下四个运行模式&#xff1a; Vim的命令模式常用操作 一、定位移动光标 按h&#xff1a;将光标向左移动一个字符&#xff0c;等同于方向键左…...

java 对接农行支付相关业务(二)

文章目录 农行掌银集成第三方APP1:掌银支付对接快e通的流程1.1 在农行网站上注册我们的app信息([网址](https://openbank.abchina.com/Portal/index/index.html))1.2:java整合农行的jar包依赖1.3:把相关配置信息整合到项目中1.4:前端获取授权码信息1.5:后端根据授权码信…...

超频是什么意思?超频的好处和坏处

你是否曾经听说过超频&#xff1f;在电脑爱好者的圈子里&#xff0c;这个词似乎非常熟悉&#xff0c;但对很多普通用户来说&#xff0c;它可能还是一个神秘而陌生的存在。 电脑超频是什么意思 电脑超频&#xff08;Overclocking&#xff09;&#xff0c;顾名思义&#xff0c;是…...

【cocos creator】进度条控制脚本,支持节点进度条,图片进度条,进度条组件,和进度文字展示

进度条控制脚本&#xff0c;支持节点进度条&#xff0c;图片进度条&#xff0c;进度条组件&#xff0c;和进度文字展示 const { ccclass, property, menu } cc._decorator;let text_type cc.Enum({"20%": 0,"1/5": 1,"差值": 2,"自定义…...

Bean的一些属性信息总结

我们知道&#xff0c;在Spring中&#xff0c;一个Bean可以理解为一个对象&#xff0c;但是二者之间肯定是有区别的&#xff0c;比如一个Bean可以实例化成很多个对象、Bean中可以带有某些描述信息。 学习Bean&#xff0c;能更好地使用Bean。 1、Spring两个核心概念的由来【可忽…...

CentOS 7 安装 Minio

获取MinIO安装包 下载地址如下&#xff1a;下载地址通过以下命令可直接将安装包下载至服务器 wget https://dl.min.io/server/minio/release/linux-amd64/archive/minio-20230809233022.0.0.x86_64.rpm安装MinIO rpm -ivh minio-20230809233022.0.0.x86_64.rpm集成Systemd …...

vue3和vite实现vue-router4版本路由的配置以及自动生成路由配置

这个是普通的手动路由配置&#xff1a;https://blog.csdn.net/weixin_68658847/article/details/130071101 自动路由配置 创建项目 npm create vitelatest my-vue-app -- --template vue // 或者 yarn create vite my-vue-app --template vue// 安装路由 yarn add vue-route…...

Flutter 中的 CupertinoDatePicker 小部件:全面指南

Flutter 中的 CupertinoDatePicker 小部件&#xff1a;全面指南 在 Flutter 中&#xff0c;CupertinoDatePicker 是 Cupertino 组件库的一部分&#xff0c;它提供了一个 iOS 风格的日期选择器。这个选择器允许用户选择日期和时间&#xff0c;非常适合需要符合 iOS 设计指南的应…...

用 Python 编写自动发送每日电子邮件报告的脚本

第一步&#xff1a;安装必要的库 你需要安装 smtplib&#xff08;Python 自带&#xff09;&#xff0c;但你需要安装 schedule 和 email 库。你可以使用以下命令安装这些库&#xff1a; pip install schedule第二步&#xff1a;编写发送邮件的脚本 这里是一个完整的 Python …...

IT人的拖延——渴望成功与害怕成功的矛盾

很多人都以为&#xff0c;害怕失败是拖延的主要诱因&#xff0c;但其实“害怕成功”也是拖延的主要诱因之一。要说这个原因&#xff0c;我们不得不提起Bible中的一个人“约拿”&#xff0c;让我们先来看看他的故事带给我们什么启示。 约拿情结简介 约拿是Bible中的一名先知&a…...

【全开源】场馆预定系统源码(ThinkPHP+FastAdmin+UniApp)

一款基于ThinkPHPFastAdminUniApp开发的多场馆场地预定小程序&#xff0c;提供运动场馆运营解决方案&#xff0c;适用于体育馆、羽毛球馆、兵乒球馆、篮球馆、网球馆等场馆。 场馆预定系统源码&#xff1a;打造高效便捷的预定体验 一、引言&#xff1a;数字化预定时代的来临 …...

音乐系统java在线音乐网站基于springboot+vue的音乐系统带万字文档

文章目录 音乐系统一、项目演示二、项目介绍三、万字项目文档四、部分功能截图五、部分代码展示六、底部获取项目源码和万字论文参考&#xff08;9.9&#xffe5;带走&#xff09; 音乐系统 一、项目演示 在线音乐系统 二、项目介绍 基于springbootvue的前后端分离在线音乐系…...

Python—面向对象小解(1)

一、面向对象 面向对象编程&#xff08;Object-Oriented Programming&#xff0c;简称 OOP&#xff09;是一种程序设计范式&#xff0c;它通过使用“对象”和“类”来组织代码。Python 是一种面向对象的编程语言&#xff0c;支持 OOP 的核心概念。 面向过程&#xff1a…...

2024最新TikTok抖音国际版,tiktok正版免拔卡安装来了!

保姆级教程&#xff01;2024最新TikTok抖音国际版&#xff0c;无限制&#xff01;tiktok正版免拔卡安装方法来了&#xff01; TikTok这款APP为何让全球都为之疯狂&#xff1f;因为它更懂人性&#xff0c;懂的人都懂&#xff01; 我是你的老朋友阿星&#xff0c;今天阿星要给大…...

【Python-OS】os.path.splitext()

作用&#xff1a;将文件路径分割成文件名和扩展名两部分。 slide_id, _ os.path.splitext(slide) print("slide:") print(slide) print("slide_id:") print(slide_id)注&#xff1a; slide是文件名&#xff0c;可以自行赋值...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...