当前位置: 首页 > news >正文

使用 CNN 训练自己的数据集

CNN(练习数据集)

  • 1.导包:
  • 2.导入数据集:
  • 3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:
  • 4. 查看数据集中的一部分图像,以及它们对应的标签:
  • 5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:
  • 6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:
  • 7.将数据集缓存到内存中,加快速度:
  • 8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:
  • 9.打印网络结构:
  • 10.设置优化器,定义了训练轮次和批量大小:
  • 11.训练数据集:
  • 12.画出图像:
  • 13.评估您的模型在验证数据集的性能:
  • 14.输出在验证集上的预测结果和真实值的对比:
  • 15.输出可视化报表:

  • 在网上寻找一个新的数据集,自己进行训练

1.导包:

import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models

输出结果:
在这里插入图片描述

2.导入数据集:

# 定义超参数
data_dir = "D:\JUANJI"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
batch_size = 30
img_height = 180
img_width = 180

输出结果:
在这里插入图片描述

3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:

#  使用image_dataset_from_directory()将数据加载到tf.data.Dataset中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,  # 验证集0.2subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

输出结果:
在这里插入图片描述

4. 查看数据集中的一部分图像,以及它们对应的标签:

class_names = train_ds.class_names
print(class_names)
# 可视化
plt.figure(figsize=(16, 8))
for images, labels in train_ds.take(1):for i in range(16):ax = plt.subplot(4, 4, i + 1)# plt.imshow(images[i], cmap=plt.cm.binary)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
plt.show()

输出结果:
在这里插入图片描述
在这里插入图片描述

5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

输出结果:
在这里插入图片描述

6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:

aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,horizontal_flip=True, fill_mode="nearest")
x = aug.flow(image_batch, labels_batch)
AUTOTUNE = tf.data.AUTOTUNE

输出结果:
在这里插入图片描述

7.将数据集缓存到内存中,加快速度:

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

输出结果:
在这里插入图片描述

8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:

# 为了增加模型的泛化能力,增加了Dropout层,并将最大池化层更新为平均池化层
num_classes = 3
model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width, 3)),layers.Conv2D(32, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(128, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(256, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(512, activation='relu'),layers.Dense(num_classes)
])

输出结果:
在这里插入图片描述

9.打印网络结构:

model.summary()

输出结果:
在这里插入图片描述

10.设置优化器,定义了训练轮次和批量大小:

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])EPOCHS = 100
BS = 5

输出结果:
在这里插入图片描述

11.训练数据集:

# 训练网络
# model.fit 可同时处理训练和即时扩充的增强数据。
# 我们必须将训练数据作为第一个参数传递给生成器。生成器将根据我们先前进行的设置生成批量的增强训练数据。
for images_train, labels_train in train_ds:continue
for images_test, labels_test in val_ds:continue
history = model.fit(x=aug.flow(images_train,labels_train, batch_size=BS),validation_data=(images_test,labels_test),
steps_per_epoch=1,epochs=EPOCHS)

输出结果:
在这里插入图片描述

12.画出图像:

# 画出训练精确度和损失图
N = np.arange(0, EPOCHS)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, history.history["loss"], label="train_loss")
plt.plot(N, history.history["val_loss"], label="val_loss")
plt.plot(N, history.history["accuracy"], label="train_acc")
plt.plot(N, history.history["val_accuracy"], label="val_acc")
plt.title("Aug Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc='upper right')  # legend显示位置
plt.show()

输出结果:
在这里插入图片描述

13.评估您的模型在验证数据集的性能:

test_loss, test_acc = model.evaluate(val_ds, verbose=2)
print(test_loss, test_acc)

输出结果:
在这里插入图片描述

14.输出在验证集上的预测结果和真实值的对比:

#  优化2 输出在验证集上的预测结果和真实值的对比
pre = model.predict(val_ds)
for images, labels in val_ds.take(1):for i in range(4):ax = plt.subplot(1, 4, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.xticks([])plt.yticks([])# plt.xlabel('pre: ' + class_names[np.argmax(pre[i])] + ' real: ' + class_names[labels[i]])plt.xlabel('pre: ' + class_names[np.argmax(pre[i])])print('pre: ' + str(class_names[np.argmax(pre[i])]) + ' real: ' + class_names[labels[i]])
plt.show()

输出结果:
在这里插入图片描述

15.输出可视化报表:

print(labels_test)
print(labels)
print(pre)
print(class_names)
from sklearn.metrics import classification_report
# 优化1 输出可视化报表
print(classification_report(labels_test,pre.argmax(axis=1),
target_names=class_names))

输出结果:
在这里插入图片描述

相关文章:

使用 CNN 训练自己的数据集

CNN(练习数据集) 1.导包:2.导入数据集:3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:4. 查看数据集中的一部分图像,以及它们对应的标签:5.迭代数据集 train_ds&#xff0…...

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计 在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS&…...

基于VMware安装Linux虚拟机

1.准备Linux环境 首先,我们要准备一个Linux的系统,成本最低的方式就是在本地安装一台虚拟机。为了统一学习环境,不管是使用MacOS还是Windows系统的同学,都建议安装一台虚拟机。 windows采用VMware,Mac则采用Fusion …...

6、phpjm混淆解密和php反序列化

题目:青少年雏形系统 1、打开链接也是一个登入面板 2、尝试了sqlmap没头绪 3、尝试御剑,发现一个www.zip 4、下载打开,有一个php文件打开有一段phpjm混淆加密 5、使用手工解混淆 具体解法链接:奇安信攻防社区-phpjm混淆解密浅谈…...

Codeforces Round 909 (Div. 3) E. Queue Sort(模拟 + 贪心之找到了一个边界点)

弗拉德找到了一个由 n 个整数组成的数组 a ,并决定按不递减的顺序排序。 为此,弗拉德可以多次执行下面的操作: 提取数组的第一个元素并将其插入末尾; 将个元素与前一个元素对调,直到它变成第一个元素或严格大于前一个…...

设计模式基础——设计原则介绍

1.概述 ​ 对于面向对象软件系统的设计而言,如何同时提高一个软件系统的可维护性、可复用性、可拓展性是面向对象设计需要解决的核心问题之一。面向对象设计原则应运而生,这些原则你会在设计模式中找到它们的影子,也是设计模式的基础。往往判…...

【校园网网络维修】当前用户使用的IP与设备重定向地址中IP不一致,请重新认证

出现的网络问题:当前用户使用的IP与设备重定向地址中IP不一致,请重新认证 可能的原因: 把之前登录的网页收藏到浏览器,然后直接通过这个链接进行登录认证。可能是收藏网址导致的ip地址请求参数不一致。 解决方法: 方法…...

如何找到docker的run(启动命令)

使用python三方库进行 需要安装python解释器 安装runlike安装包 pip3 install runlike 运行命令 runlike -p <container_name> # 后面可以是容器名和容器id&#xff0c;-p参数是显示自动换行实验 使用docker启动一个jenkins 启动命令为 docker run -d \ -p 9002:80…...

Spring如何管理Bean的生命周期呢?

我们都知道&#xff0c;在面试的过程中&#xff0c;关于 Spring 的面试题&#xff0c;那是各种各样&#xff0c;很多时候就会问到关于 Spring的相关问题&#xff0c;比如 AOP &#xff0c;IOC 等等&#xff0c;还有就是关于 Spring 是如何管理 Bean 的生命周期的相关问题&#…...

Java网络编程:UDP通信篇

目录 UDP协议 Java中的UDP通信 DatagramSocket DatagramPacket UDP客户端-服务端代码实现 UDP协议 对于UDP协议&#xff0c;这里简单做一下介绍&#xff1a; 在TCP/IP协议簇中&#xff0c;用户数据报协议&#xff08;UDP&#xff09;是传输层的一个主要协议之一&#xf…...

HTML+CSS+JS简易计算器

HTMLCSSJS简易计算器 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>简易计算器</t…...

STM32使用ST-LINK下载程序中需要注意的几点

使用keil5的ST-link下载界面 前提是ST-LINK已经连接好&#xff0c;&#xff08;下图中是没有连接ST-link设备&#xff09;&#xff0c;只是为了展示如何查看STlink设备是否连接的方式 下载前一定设置下载完成后自启动 这个虽然不是必须&#xff0c;但对立即看到新程序的现象…...

我和jetson-Nano的故事(12)——安装pytorch 以及 torchvision

在jetson nano中安装Anaconda、pytorch 以及 torchvision 1.Pytorch下载安装2.Torchvision安装 1.Pytorch下载安装 首先登录英伟达官网下载Pytorch安装包&#xff0c;这里以PyTorch v1.10.0为例 安装依赖库 sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev liba…...

「异步魔法:Python数据库交互的革命」(一)

Hi&#xff0c;我是阿佑&#xff0c;今天将和大家一块打开异步魔法的大门&#xff0c;进入Python异步编程的神秘领域&#xff0c;学习如何同时施展多个咒语而不需等待。了解asyncio的魔力&#xff0c;掌握Async SQLAlchemy和Tortoise-ORM的秘密&#xff0c;让你的数据库操作快如…...

探秘GPT-4o:从版本对比到技术能力的全面评价

随着人工智能技术的不断发展&#xff0c;自然语言处理领域的突破性技术——GPT&#xff08;Generative Pre-trained Transformer&#xff09;系列模型也在不断演进。最新一代的GPT-4o横空出世&#xff0c;引起了广泛的关注和讨论。在本文中&#xff0c;我们将对GPT-4o进行全面评…...

四川汇烁面试总结

自我介绍项目介绍、 目录 1.jdk和jre的区别&#xff1f; 2.一段代码的执行流程&#xff1f; 3.接口与抽象类的区别&#xff1f; 4.ArrayList与LinkList的区别&#xff1f; 5.对HashMap的理解? 6.常见的异常&#xff1f; 7.throw 和 throws 有什么区别&#xff1f; 8.…...

【小程序 按钮 表单 】

按钮 代码演示 xxx.wxml <view class"boss" hover-class"box"hover-start-time"2000"hover-stay-time"5000">测试文本<view hover-stop-propagation"true">子集</view><view>子集2</view>…...

高铁Wifi是如何接入的?

使用PC端的朋友&#xff0c;请将页面缩小到最小比例&#xff0c;阅读最佳&#xff01; 在飞驰的高铁上&#xff0c;除了窗外一闪而过的风景&#xff0c;你是否好奇过&#xff0c;高铁Wifi信号如何连接的呢&#xff1f; 远动的火车可不能连接光纤吧&#xff0c;难道是连接的卫星…...

gitlab之docker-compose汉化离线安装

目录 概述离线资源docker-compose结束 概述 gitlab可以去 hub 上拉取最新版本&#xff0c;在此我选择汉化 gitlab &#xff0c;版本 11.x 离线资源 想自制离线安装镜像&#xff0c;请稳步参考 docker镜像的导入导出 &#xff0c;无兴趣的直接使用在此提供离线资源 百度网盘(链…...

【算法】dd爱转转

✨题目链接&#xff1a; dd爱旋转 ✨题目描述 读入一个n∗n的矩阵&#xff0c;对于一个矩阵有以下两种操作 1:顺时针旋180 2:关于行镜像 如 变成 给出q个操作&#xff0c;输出操作完的矩阵 ✨输入描述: 第一行一个数n(1≤n≤1000)&#xff0c;表示矩阵大小 接下来n行&#xff…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...