当前位置: 首页 > news >正文

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)

注意:本模型继续加入 组合预测模型全家桶 ,之前购买的同学请及时更新下载!

 往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

基于LSTM网络的多步预测模型_pytorch transformer-CSDN博客

基于1DCNN网络的多步预测模型-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

基于Transformer网络的多步预测模型-CSDN博客

独家原创 | 超强组合预测模型!-CSDN博客

基于TCN网络的多步预测模型-CSDN博客

基于CNN-LSTM网络的多步预测模型-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

组合预测模型思路:使用复杂模型去预测数据的分量特征,因为复杂模型参数量大,适合预测高频复杂分量特征,但是低频分量特征比较简单,要是还用复杂模型的话,就容易过拟合,反而效果不好,所以对于低频分量特征 我们采用简单模型(或者机器学习模型)去预测,然后进行预测分量的重构以实现高精度预测。

创新1:通过CNN卷积池化层降低序列长度,增加数据维度,然后再送入Transformer编码器层进行特征增强,利用多头注意力和其优越的网络结构融合空间特征和时域特征;

创新2:把 CEEMDAN 算法对时间序列分解后的分量通过样本熵的计算进行划分,再分别通过 CNN-Transfromer 模型 和 XGBoost 模型进行组合预测,来实现精准预测。

注意:此次产品,我们还有配套的模型讲解和参数调节讲解!

前言

本文基于前期介绍的电力变压器(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与组合预测模型(CNN-Transformer + XGBoost)的方法,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用CNN-Transformer模型和XGBoost模型对分解后的数据进行建模,最终通过集成方法结合两者的预测结果。

电力变压器数据集的详细介绍可以参考下文:

电力变压器数据集介绍和预处理-CSDN博客

1 电力变压器数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,然后通过计算每个分量的样本熵值进行分析。

样本熵是一种用于衡量序列复杂度的方法,可以通过计算序列中的不确定性来评估其复杂性。样本熵越高,表示序列的复杂度越大。

我们大致把前6个高样本熵值复杂分量作为CNN-Transformer模型的输入进行预测,后5个低样本熵值简单分量作为XGBoost模型的输入进行预测.

2 数据集制作与预处理

2.1 划分数据集

按照9:1划分训练集和测试集, 然后再按照前6后5划分分量数据。

在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到48,运用CCEMDAN-CNN-Transformer模型来充分提取前6个分量序列中的特征信息。

分批保存数据,用于不同模型的预测

3 基于CEEMADN的组合预测模型

3.1 定义CNN-Transformer网络模型

3.2 设置参数,训练模型

50个epoch,MSE 为0.002122,CNN-Transformer预测效果显著,模型能够充分提取时间序列的时序特征和空间特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加CNN层数和每层的维度,微调学习率;

  • 调整Transformer编码器层数、多头注意力头数、注意力维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

保存训练结果和预测数据,以便和后面XGBoost模型的结果相组合。

4 基于XGBoost的模型预测

传统机器学习模型 XGBoost 教程如下:

超强预测算法:XGBoost预测模型-CSDN博客

数据加载,训练数据、测试数据分组,5个分量,划分5个数据集

保存预测的数据,其他分量预测与上述过程一致,保留最后模型结果即可。

5 结果可视化和模型评估

5.1 分量预测结果可视化

5.2 组合预测结果可视化

5.3 模型评估

由分量预测结果可见,前6个复杂分量在CNN-Transformer预测模型下拟合效果良好,后5个简单分量在XGBoost模型的预测下,拟合程度特别好,组合预测效果显著!

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#代码和数据集:https://mbd.pub/o/bread/mbd-ZZ6ZmJtq

相关文章:

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)

注意:本模型继续加入 组合预测模型全家桶 中,之前购买的同学请及时更新下载! 往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客 VMD CEEMDAN 二次分解,Transformer-BiGRU预测模…...

箭头函数的意义和函数的二义性

前言 说到箭头函数,可能很多人的第一反应就是和普通函数的区别: 箭头函数没有 this,普通函数的 this 指向依赖它是如何被调用的箭头函数没有 arguments 对象,而是通过剩余参数(rest parameters)来获取所有…...

618必买的数码好物有哪些?盘点兼具设计与实用的数码好物分享

随着618购物节的到来,数码爱好者们又开始跃跃欲试,期待在这个年度大促中寻找到自己心仪的数码好物,在这个数字化时代,数码产品不仅是我们日常生活的必需品,更是提升生活品质的重要工具,那么在众多的数码产品…...

【好书分享第十三期】AI数据处理实战108招:ChatGPT+Excel+VBA

文章目录 一、内容介绍二、内页插图三、作者简介四、前言/序言五、目录 一、内容介绍 《AI数据处理实战108招:ChatGPTExcelVBA》通过7个专题内容、108个实用技巧,讲解了如何运用ChatGPT结合办公软件Excel和VBA代码实现AI办公智能化、高效化。随书附赠了…...

001 CentOS 7.9 安装及配置jdk-8u411-linux-x64.tar.gz

文章目录 1. 下载JDK安装包2. 创建安装目录3. 上传并解压JDK安装包4. 配置环境变量5. 验证安装-bash: pathmunge: command not found配置文件区别$PATH https://dbeaver.io/ 1. 下载JDK安装包 首先,需要从Oracle官方网站或其他可信赖的来源下载jdk-8u411-linux-x64…...

Revit二次开发-WPF ProgressBar 执行程序中显示进度条

Revit开发执行命令时如果时间长,界面会顶住,导致用户误以为程序未响应,解决方法:增加WPF ProgressBar 进度条执行程序中显示进度条,提示命令还是进行中, 实现流程: 新建一个WPF,Window启动时加载一个事件Loaded=“Window_Loaded”,用于显示进度条在WPF后台,新建一个异…...

React:构建Web应用的未来

引言 在不断发展的Web开发领域,React已经成为一股主导力量,重塑了我们构建用户界面和交互式应用的方式。React由Facebook(现Meta)开发,由于其创新的基于组件的架构、高效的虚拟DOM渲染和声明式编程风格而广受欢迎。在…...

【Elasticsearch】Centos7安装Elasticsearch、kibana、IK分词

目录 本文安装包下载地址注意安装elasticsearch1.上传文件2.解压elasticsearch-6.3.1.tar.gz3.开启远程连接权限4.修改其他配置[root用户操作]5.重启虚拟机6.启动es7.外部访问 安装kibana-61.解压2.配置3.启动kibana4.访问5.在开发工具中做数据的增删改查操作 安装IK分词1.wind…...

IDEA中各种Maven相关问题(文件飘红、下载依赖和启动报错)

错误情况 包名、类名显示红色、红色波浪线,大量依赖提示不存在(程序包xxx不存在) 工程无法启动 一、前提条件 1、使用英文原版IDEA 汉化版的可能有各种奇怪的问题。建议用IDEA英文版,卸载重装。 2、下载maven,配置环…...

Android 13 VSYNC重学习

Android 13 VSYNC重学习 引言 学无止境,一个字干就完事! 源码参考基于Android 13 aosp! 一. Android VSync模块开胃菜 在开始正式的分析之前,我们先简单对Android的Vsync模块简单介绍下,如下图所示,其中: HW_VSync是…...

std::move和左值右值

引用:windows程序员面试指南 std::move std::move 是 C 标准库中的一个函数模板,用于将一个左值(左值引用)转化为右值引用,从而实现移动语义。 移动语义是一种可以将资源(如内存)从一个对象转…...

QT学习备份

2023年1月2日09:00:32 1.信号/槽编辑器 发送者:控件 信号:是控件发出的信号 接受者:包含控件的容器 槽:程序上用slot标识的方法 2.Q_OBJECT宏 只有继承了QObject类的类,才具有信号槽的能力。所以,为了使用…...

【wiki知识库】03.前后端的初步交互(展现所有的电子书)

📝个人主页:哈__ 期待您的关注 目录 一、🔥今日目标 二、📂前端配置文件补充 三、🌏前端Vue的改造 四、💡总结 一、🔥今日目标 在上一篇文章当中,我已带大家把后端的一些基本工…...

AOP——学习

AOP(面向切面编程)是Spring框架的重要特性之一,用于分离关注点并处理横切关注点,如日志记录、安全性和事务管理。在面试中,AOP相关的问题通常会涉及基本概念、应用场景、实际使用、以及与其他编程范式的比较。以下是一…...

Linux静态库、共享动态库介绍、制作及使用

参考学习:Linux下的各种文件 、动态库基本原理和使用方法,-fPIC选项的来龙去脉 、Linux静态库和动态库分析 文章写作参考:Linux共享库、静态库、动态库详解 - sunsky303 - 博客园 (cnblogs.com) 一.Linux共享库、静态库、动态库详解 使用G…...

【Paddle】稀疏计算的使用指南 稀疏ResNet的学习心得 (2) + Paddle3D应用实例稀疏 ResNet代码解读 (1.6w字超详细)

【Paddle】稀疏计算的使用指南 & 稀疏ResNet的学习心得 Paddle3D应用实例稀疏 ResNet代码解读 写在最前面一、稀疏格式简介1. COO(Coordinate Format)2. CSR(Compressed Sparse Row Format) 二、Paddle稀疏张量支持1. 创建 C…...

Linux系统维护

1. 批量安装部署 2. 初始化配置 3. 禁用Selinux 永久更改 SELinux 配置: 编辑 SELinux 配置文件:使用文本编辑器打开 /etc/selinux/config 文件: 在配置文件中,找到 SELINUX… 的行。将其值更改为以下选项之一: e…...

经典文献阅读之--RenderOcc(使用2D标签训练多视图3D Occupancy模型)

0. 简介 3D占据预测在机器人感知和自动驾驶领域具有重要的潜力,它将3D场景量化为带有语义标签的网格单元。最近的研究主要利用3D体素空间中的完整占据标签进行监督。然而,昂贵的注释过程和有时模糊的标签严重限制了3D占据模型的可用性和可扩展性。为了解…...

蓝牙设备中的UUID

文章目录 一、Device UUID二、Service UUID 一、Device UUID Device UUID也可以被称作为DeviceID。 Android 设备上扫描获取到的 deviceId 为外围设备的 MAC 地址,相对固定。iOS 设备上扫描获取到的 deviceId 是系统根据外围设备 MAC 地址及发现设备的时间生成的 …...

网络之再谈体系结构

大家都知道的是网络的体系结构,现代软件常用的体系结构无非是TCP/IP协议栈,OSI因为实现复杂并且效率没有TCP/IP协议栈好,所以不用OSI,但是,最近在复习网络知识的时候,发现了一些奇怪的地方,那就…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...