当前位置: 首页 > news >正文

YOLOv7添加注意力机制和各种改进模块

YOLOv7添加注意力机制和各种改进模块代码免费下载:完整代码

添加的部分模块代码:

########CBAM
class ChannelAttentionModule(nn.Module):def __init__(self, c1, reduction=16):super(ChannelAttentionModule, self).__init__()mid_channel = c1 // reductionself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.shared_MLP = nn.Sequential(nn.Linear(in_features=c1, out_features=mid_channel),nn.LeakyReLU(0.1, inplace=True),nn.Linear(in_features=mid_channel, out_features=c1))self.act = nn.Sigmoid()# self.act=nn.SiLU()def forward(self, x):avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0), -1)).unsqueeze(2).unsqueeze(3)maxout = self.shared_MLP(self.max_pool(x).view(x.size(0), -1)).unsqueeze(2).unsqueeze(3)return self.act(avgout + maxout)class SpatialAttentionModule(nn.Module):def __init__(self):super(SpatialAttentionModule, self).__init__()self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)self.act = nn.Sigmoid()def forward(self, x):avgout = torch.mean(x, dim=1, keepdim=True)maxout, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avgout, maxout], dim=1)out = self.act(self.conv2d(out))return outclass CBAM(nn.Module):def __init__(self, c1, c2):super(CBAM, self).__init__()self.channel_attention = ChannelAttentionModule(c1)self.spatial_attention = SpatialAttentionModule()def forward(self, x):out = self.channel_attention(x) * xout = self.spatial_attention(out) * outreturn out
##############CBAM
########SE
class SEAttention(nn.Module):def __init__(self, channel=512,reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)
########SE
#######GAM
class GAMAttention(nn.Module):# https://paperswithcode.com/paper/global-attention-mechanism-retain-informationdef __init__(self, c1, c2, group=True, rate=4):super(GAMAttention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),kernel_size=7,padding=3),nn.BatchNorm2d(int(c1 / rate)),nn.ReLU(inplace=True),nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,kernel_size=7,padding=3),nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att = channel_shuffle(x_spatial_att, 4)  # last shuffleout = x * x_spatial_attreturn outdef channel_shuffle(x, groups=2):  ##shuffle channel# RESHAPE----->transpose------->FlattenB, C, H, W = x.size()out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()out = out.view(B, C, H, W)return out
#######GAM
#####NAMAttention  该注意力机制只有通道注意力机制的代码,空间的没有
import torch.nn as nn
import torch
from torch.nn import functional as Fclass Channel_Att(nn.Module):def __init__(self, channels, t=16):super(Channel_Att, self).__init__()self.channels = channelsself.bn2 = nn.BatchNorm2d(self.channels, affine=True)def forward(self, x):residual = xx = self.bn2(x)weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())x = x.permute(0, 2, 3, 1).contiguous()x = torch.mul(weight_bn, x)x = x.permute(0, 3, 1, 2).contiguous()x = torch.sigmoid(x) * residual  #return xclass NAMAttention(nn.Module):def __init__(self, channels, out_channels=None, no_spatial=True):super(NAMAttention, self).__init__()self.Channel_Att = nn.Sequential(*(Channel_Att(channels)for _ in range(1)))def forward(self, x):# print(x.device)## device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')x_out1 = self.Channel_Att(x)return x_out1
#####NAMAttentionclass RepGhostBottleneck1(nn.Module):# RepGhostNeXt Bottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_outsuper().__init__()self.c_ = int(c2 * e)  # hidden channels# attention mechanism can be usedself.m = nn.Sequential(*(RepGhostBottleneck(c1, c2, 2*self.c_) for _ in range(n)))def forward(self, x):return self.m(x)

相关文章:

YOLOv7添加注意力机制和各种改进模块

YOLOv7添加注意力机制和各种改进模块代码免费下载:完整代码 添加的部分模块代码: ########CBAM class ChannelAttentionModule(nn.Module):def __init__(self, c1, reduction16):super(ChannelAttentionModule, self).__init__()mid_channel c1 // red…...

【OpenGL第一个程序】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、OpenGL第一个程序 前言 本文介绍了OpenGL入门的第一个程序,有详细的注释,便于大家理解其中的逻辑。 一、OpenGL第一个程序 #inclu…...

GPT-4O神器来袭!自动生成Figma设计稿,移动端开发瞬间加速!

2024年5月29日- 近日,一款基于GPT-4O技术的创新工具成功实现根据产品需求文档(PRD)自动生成Figma设计稿的功能,为移动端应用开发者带来革命性的便捷。据悉,该功能主要针对移动端应用进行优化,并支持使用高质…...

清华大学提出IFT对齐算法,打破SFT与RLHF局限性

监督微调(Supervised Fine-Tuning, SFT)和基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)是预训练后提升语言模型能力的两大基础流程,其目标是使模型更贴近人类的偏好和需求。 考虑到监督…...

TS(TypeScript)中Array数组无法调出使用includes方法,显示红色警告

解决方法 打开tsconfig.json文件,添加"lib": ["es7", "dom"]即可。 如下图所示。...

基于Kafka的日志采集

目录 前言 架构图 资源列表 基础环境 关闭防护墙 关闭内核安全机制 修改主机名 添加hosts映射 一、部署elasticsearch 修改limit限制 部署elasticsearch 修改配置文件 启动 二、部署filebeat 部署filebeat 添加配置文件 启动 三、部署kibana 部署kibana 修…...

某烟草企业数字化转型物流信息化咨询项目规划方案(117页PPT)

方案介绍: 烟草企业数字化转型物流信息化咨询项目规划方案将为企业带来多方面的价值,包括提升物流运营效率、降低物流成本、优化供应链管理、增强企业竞争力和促进可持续发展等。这些价值的实现将有助于企业在激烈的市场竞争中保持领先地位并实现可持续…...

失落的方舟 命运方舟台服封号严重 游戏封IP怎么办

步入《失落的方舟》(Lost Ark),这款由Smilegate精心打造的宏大规模在线角色扮演游戏(MMORPG),您将启程前往阿克拉西亚这片饱经沧桑的奇幻大陆,展开一场穿越时空的壮阔探索。在这里,一…...

2.10 mysql设置远程访问权限

2.10 mysql设置远程访问权限 目录1. 管理员运行mysql命令窗口2. 使用 root 用户重新登录 MySQL3. 修改用户权限4. 修改mysql安装目录下的my.ini 目录 说明: Mysql8.0 设置远程访问权限 一、Mysql8.0 设置远程访问权限 1. 管理员运行mysql命令窗口 2. 使用 root 用…...

C# 证件照替换底色与设置背景图---PaddleSegSharp

PaddleSegSharp 是一个基于百度飞桨PaddleSeg项目的人像分割模块而开发的.NET的工具类库。 PaddleSegSharp 中PaddleSeg.dll文件是基于开源项目最新发布版本PaddleSeg PaddleSeg的版本修改而成的C动态库,基于opencv的x64编译而成的。 PaddleSeg是基于飞桨PaddlePa…...

HCIA-HarmonyOS Device Developer 课程大纲

一:OpenHarmony 介绍 - ( 3 课时) - OpenHarmony 简介;OpenHarmony 设计理念;OpenHarmony 设计理念概述; - OpenHarmony 试图解决的问题;应用生态割裂问题;用户数据割裂问题&#…...

洗地机哪个牌子最好用?十大名牌洗地机排行榜

作为一种新兴的智能家居产品,洗地机的市场规模已经突破了百亿大关。如此庞大的市场自然吸引了大量资本的涌入,许多品牌纷纷推出自己的洗地机产品,试图在这个竞争激烈的市场中占据一席之地。然而,面对如此多的品牌和型号&#xff0…...

Unity开发——XLua热更新之Hotfix配置(包含xlua获取与导入)

一、Git上获取xlua 最新的xlua包,下载地址链接:https://github.com/Tencent/xLua 二、Unity添加xlua 解压xlua压缩包后,将xlua里的Assets里的文件直接复制进Unity的Assets文件夹下。 成功导入后,unity工具栏会出现xlua选项。 …...

Qt 基于FFmpeg的视频转换器 - 转GIF动图

Qt 基于FFmpeg的视频转换器 - 转GIF动图 引言一、设计思路二、核心源码三、参考链接 引言 gif格式的动图可以通过连续播放一系列图像或视频片段来展示动态效果,使信息更加生动形象,可以很方便的嵌入到网页或者ppt中。上图展示了视频的前几帧转为gif动图的…...

HTML新春烟花盛宴

目录 写在前面 烟花盛宴 完整代码 修改文字...

第十四届蓝桥杯c++研究生组

A 混乘数字 关键思路是求每个十进制数的数字以及怎么在一个数组中让判断所有的数字次数相等。 求每个十进制的数字 while(n!0){int x n%10;//x获取了n的每一个位数字n/10;}扩展:求二进制的每位数字 (注意:进制转换、1的个数、位运算&#…...

KDD 2024|基于隐空间因果推断的微服务系统根因定位

简介:本文介绍了由清华大学、南开大学、eBay、微软、中国科学院计算机网络信息中心等单位共同合作的论文《基于隐空间因果推断的受限可观测性场景的微服务系统根因定位》。该论文已被KDD 2024会议录用。 论文标题:Microservice Root Cause Analysis Wit…...

白鹭群优化算法,原理详解,MATLAB代码免费获取

白鹭群优化算法(Egret Swarm Optimization Algorithm,ESOA)是一种受自然启发的群智能优化算法。该算法从白鹭和白鹭的捕食行为出发,由三个主要部分组成:坐等策略、主动策略和判别条件。将ESOA算法与粒子群算法(PSO)、遗传算法(GA)…...

【源码】2024完美运营版商城/拼团/团购/秒杀/积分/砍价/实物商品/虚拟商品等全功能商城

后台可以自由拖曳修改前端UI页面 还支持虚拟商品自动发货等功能 前端UNIAPP 后端PHP 一键部署版本 获取方式: 微:uucodes...

Java-数组内存解析

文章目录 1.内存的主要结构:栈、堆2.一维数组的内存解析3.二维数组的内存解析 1.内存的主要结构:栈、堆 2.一维数组的内存解析 举例1:基本使用 举例2:两个变量指向一个数组 3.二维数组的内存解析 举例1: 举例2&am…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

MySQL的pymysql操作

本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

JavaScript 标签加载

目录 JavaScript 标签加载script 标签的 async 和 defer 属性,分别代表什么,有什么区别1. 普通 script 标签2. async 属性3. defer 属性4. type"module"5. 各种加载方式的对比6. 使用建议 JavaScript 标签加载 script 标签的 async 和 defer …...