当前位置: 首页 > news >正文

十种常用数据分析模型

1-线性回归(Linear Regression)

场景:预测商品销售额

  • 优点:简单易用,结果易于解释
  • 缺点:假设线性关系,容易受到异常值影响
  • 概念:建立自变量和因变量之间线性关系的模型。
  • 公式:[ y = b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n ]

代码示例:

import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 假设我们有一个包含商品销售数据的DataFrame
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'sale_qtty': [50, 60, 55, 65]
})# 特征和目标变量
X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['sale_qtty']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

结果与判断:

通过模型预测销售量,评估误差可以帮助改进定价策略。

2-逻辑回归(Logistic Regression)

场景:预测订单是否有效

  • 优点:适用于二分类问题,解释性强
  • 缺点:不适用于多分类或连续型结果预测
  • 概念:用于处理二分类问题,输出值在0到1之间。
  • 公式:[ P(Y=1|X) = \frac{1}{1 + e^{-(b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n)}} ]

代码示例:

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0],'sale_ord_valid_flag': [1, 1, 1, 0, 0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['sale_ord_valid_flag']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print(f'Confusion Matrix: \\n{cm}')

结果与判断:

通过预测订单有效性,可以优化订单审核流程,减少无效订单的产生。

3-决策树(Decision Tree)

场景:根据用户行为特征分类用户等级

  • 优点:易于理解和解释,可以处理非线性关系
  • 缺点:容易过拟合
  • 概念:通过一系列规则对数据进行分类或预测。
  • 公式:决策树根据特征值进行分裂,并构建一棵树状结构来表示决策过程。

代码示例:

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0],'user_lv_cd': [10, 10, 10, 0, 0, 1]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['user_lv_cd']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
report = classification_report(y_test, y_pred)
print(f'Classification Report: \\n{report}')

结果与判断:

分类用户等级,帮助精准营销和个性化推荐。

4-随机森林(Random Forest)

场景:预测用户实际支付金额

  • 优点:降低过拟合,处理高维数据
  • 缺点:训练时间长,结果不易解释
  • 概念:由多个决策树组成的集成学习模型。
  • 公式:通过投票方式聚合多个决策树的预测结果来提高预测准确度。

代码示例:

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score# 数据
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'user_actual_pay_amount': [976.0, 978.99, 979.0, 875.0]
})X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['user_actual_pay_amount']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
r2 = r2_score(y_test, y_pred)
print(f'R2 Score: {r2}')

结果与判断:

预测用户支付金额,优化促销策略和定价。

5-支持向量机(SVM)

场景:分类订单是否取消

  • 优点:有效处理高维数据,适合小样本
  • 缺点:训练时间长,参数调优复杂
  • 概念:用于分类和回归的监督学习模型。
  • 公式:通过找到最大边距超平面来划分不同类别数据点

代码示例:

from sklearn.svm import SVC
from sklearn.metrics import accuracy_score# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0],'cancel_flag': [0, 0, 0, 1, 1, 1]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['cancel_flag']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = SVC()
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

结果与判断:

预测订单是否取消,优化库存管理。

6-K-均值聚类(K-Means Clustering)

场景:用户行为数据聚类分析

  • 优点:易于实现和解释
  • 缺点:需要预先定义聚类数,不适用于非球形数据
  • 概念:将数据点划分为K个类别的无监督学习算法。
  • 公式:最小化每个聚类中数据点与该聚类中心的距离的平方和。

代码示例:

from sklearn.cluster import KMeans# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]# 训练模型
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)# 聚类结果
data['cluster'] = kmeans.labels_
print(data)

结果与判断:

聚类用户行为数据,识别用户群体,制定个性化营销策略。

7-主成分分析(PCA)

场景:降维处理用户行为数据

  • 优点:降低数据维度,去除冗余信息
  • 缺点:解释性差,可能丢失有用信息
  • 概念:降维技术,用于发现数据中的主要特征。
  • 公式:通过线性变换将原始数据映射到低维空间,使得数据在新空间中的方差最大化。

代码示例:

from sklearn.decomposition import PCA# 数据
data = pd.DataFrame({'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0, 900.0],'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0, 300.0]
})X = data[['user_actual_pay_amount', 'total_offer_amount']]# 降维处理
pca = PCA(n_components=1)
principalComponents = pca.fit_transform(X)
data['principal_component'] = principalComponents
print(data)

结果与判断:

降维处理后,数据可视化更容易,识别主成分,简化模型。

8-时间序列分析(Time Series Analysis)

场景:销售数据时间序列预测

  • 优点:适用于时间相关数据,预测未来趋势
  • 缺点:需要时间顺序数据,复杂性高
  • 概念:研究时间序列数据的模式、趋势和周期性,并用于预测未来值。
  • 公式:时间序列模型可以包括自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

代码示例:

import pandas as pd
from statsmodels.tsa.arima.model import ARIMA# 数据
data = pd.Series([976, 978.99, 979, 800, 850, 900], index=pd.date_range(start='2020-01-01', periods=6, freq='M'))# 训练模型
model = ARIMA(data, order=(1, 1, 1))
model_fit = model.fit()# 预测
forecast = model_fit.forecast(steps=3)[0]
print(f'Forecast: {forecast}')

结果与判断:

预测未来销售趋势,帮助库存管理和销售计划。

9-关联规则分析(Association Rule Learning)

场景:购物篮分析

  • 优点:发现项间关联规则,适合市场篮子分析
  • 缺点:计算复杂度高,规则解释性差
  • 概念:用于发现数据集中的物品之间的关联关系,常用于购物篮分析和市场篮分析。
  • 公式:关联规则通常表示为“A ➞ B”的形式,其中A和B是物品集合,相关性通过支持度和置信度来衡量。

代码示例:

from mlxtend.frequent_patterns import apriori, association_rules# 数据
data = pd.DataFrame({'milk': [1, 1, 0, 0, 1],'bread': [1, 1, 1, 0, 1],'butter': [0, 1, 1, 0, 1]
})# 频繁项集
frequent_itemsets = apriori(data, min_support=0.6, use_colnames=True)
# 关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
print(rules)

结果与判断:

发现商品间的关联规则,优化商品组合销售和促销策略。

10-XGBoost

场景:提升模型的预测精度

  • 优点:处理大规模数据,预测精度高
  • 缺点:模型复杂,计算资源消耗大
  • 概念:集成学习方法,通过训练多个弱分类器并加权组合得到一个强分类器。
  • 公式:使用加权投票来提高分类准确率,弱分类器的误差率会影响其权重。

代码示例:

import xgboost as xgb
from sklearn.metrics import mean_squared_error# 数据
data = pd.DataFrame({'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],'user_actual_pay_amount': [976.0, 978.99, 979.0, 875.0]
})X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['user_actual_pay_amount']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型
model = xgb.XGBRegressor(objective ='reg:squarederror')
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

结果与判断:

通过提升模型的预测精度,优化业务决策和营销策略。

(交个朋友/技术接单/ai办公/性价比资源)

245561cc07c04e2bb13191bcc511ddc5.jpg

 

 

相关文章:

十种常用数据分析模型

1-线性回归(Linear Regression) 场景:预测商品销售额 优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式&#x…...

salesforce 公式字段 判断一个字段是否在某个多选列表中

在 Salesforce 中,你可以使用公式字段来判断一个字段的值是否在一个多选列表中。这通常涉及使用包含特定值的函数和一些字符串操作。以下是一个常见的方法: 假设你有一个多选列表字段 Multi_Select_Field__c,你想检查这个字段是否包含某个值…...

C++STL容器系列(三)list的详细用法和底层实现

目录 一:介绍二:list的创建和方法创建list方法 三:list的具体用法3.1 push_back、pop_back、push_front、pop_front3.2 insert() 和 erase()3.3 splice 函数 四:list容器底层实现4.1 list 容器节点结构5.2 list容器迭代器的底层实…...

IEEE Latex模版踩雷避坑指南

参考文献 原Latex模版 \begin{thebibliography}{1} \bibliographystyle{IEEEtran}\bibitem{ref1} {\it{Mathematics Into Type}}. American Mathematical Society. [Online]. Available: https://www.ams.org/arc/styleguide/mit-2.pdf\bibitem{ref2} T. W. Chaundy, P. R. Ba…...

【C++】类与对象——多态详解

目录 一、多态的定义 二、重载、覆盖(重写)、隐藏(重定义)的对比 三、析构函数重写 四、C11 override 和 final 1. final 2. override 五、抽象类 六、多态的原理 一、多态的定义 多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为…...

WordPress建网站公司 建易WordPress建站

建易WordPress建网站公司是一家专业从事WordPress网站建设、网站维护、网站托管、运营推广和搜索引擎优化(SEO)等服务的公司。建易WordPress建网站公司提供多种服务,包括模板建站和定制网站,并且明码标价,价格透明,竭诚为全国各地…...

MySQL正则替换整个单词

\b 是正则表达式规定的一个特殊代码(好吧,某些人叫它元字符,metacharacter),代表着单词的开头或结尾,也就是单词的分界处。虽然通常英文的单词是由空格,标点符号或者换行来分隔的,但…...

Java设计模式:享元模式实现高效对象共享与内存优化(十一)

码到三十五 : 个人主页 目录 一、引言二、享元设计模式的概念1. 对象状态的划分2. 共享机制 三、享元设计模式的组成四、享元设计模式的工作原理五、享元模式的使用六、享元设计模式的优点和适用场景结语 [参见]: Java设计模式:核心概述&…...

景源畅信电商:抖音开店步骤是什么?

随着社交媒体的兴起,抖音已经成为一个不可忽视的电商平台。许多人都希望通过抖音开店来实现自己的创业梦想。那么,抖音开店的具体步骤是什么呢?接下来,我们将详细阐述这一问题。 一、明确回答问题抖音开店的步骤主要包括:注册账号…...

Notepad++不显示CRLF的方法

View -> Show Symbol -> 去掉勾选 Show All Characters...

前端开发工程师——AngularJS

一.表达式和语句 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-w…...

【AI算法岗面试八股面经【超全整理】——概率论】

AI算法岗面试八股面经【超全整理】 概率论信息论机器学习CVNLP 目录 1、古典概型、几何概型2、条件概率、全概率公式、贝叶斯公式3、先验概率、后验概率4、离散型随机变量的常见分布5、连续型随机变量的常见分别6、数学期望、方差7、协方差、相关系数8、独立、互斥、不相关9.大…...

vue3 使用vant

使用前提&#xff1a; vite创建的vue3项目 vanthttps://vant-ui.github.io/vant/#/zh-CN/home npm i vant 引入样式&#xff1a; main.js import vant/lib/index.css vant封装 import { showLoadingToast,closeToast,showDialog,showConfirmDialog } from vant;export func…...

网络请求客户端WebClient的使用

在 Spring 5 之前&#xff0c;如果我们想要调用其他系统提供的 HTTP 服务&#xff0c;通常可以使用 Spring 提供的 RestTemplate 来访问&#xff0c;不过由于 RestTemplate 是 Spring 3 中引入的同步阻塞式 HTTP 客户端&#xff0c;因此存在一定性能瓶颈。根据 Spring 官方文档…...

unity制作app(9)--拍照 相册 上传照片

1.传输照片&#xff08;任何较大的数据&#xff09;都需要扩展服务器的内存空间。 2.还需要base64编码 2.1客户端发送位置的编码 2.2服务器接收部分的代码...

【busybox记录】【shell指令】mkfifo

目录 内容来源&#xff1a; 【GUN】【mkfifo】指令介绍 【busybox】【mkfifo】指令介绍 【linux】【mkfifo】指令介绍 使用示例&#xff1a; 创建管道文件 - 创建的时候同时指定文件权限 常用组合指令&#xff1a; 指令不常用/组合用法还需继续挖掘&#xff1a; 内容来…...

使用Jmeter进行性能测试的基本操作方法

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…...

Linux学习笔记(epoll,IO多路复用)

Linux learning note 1、epoll的使用场景2、epoll的使用方法和内部原理2.1、创建epoll2.2、使用epoll监听和处理事件 3、示例 1、epoll的使用场景 epoll的英文全称是extend poll&#xff0c;顾名思义是poll的升级版。常见的IO复用技术有select&#xff0c;poll&#xff0c;epo…...

STM32定时器及输出PWM完成呼吸灯

文章目录 一、STM32定时器原理1、基本定时器2、通用定时器&#xff08;1&#xff09;时钟源&#xff08;2&#xff09;预分频器PSC&#xff08;3&#xff09;计数器CNT&#xff08;4&#xff09;自动装载寄存器ARR 3、高级定时器 二、PWM工作原理三、控制LED以2s的频率周期性地…...

海外仓管理系统费用解析:如何选择高性价比的海外仓系统

海外仓作为链接国内商家和海外市场的重要环节&#xff0c;其重要性自然是不言而喻的。 对于众多中小型海外仓来说&#xff0c;如何在保证服务质量的同时降低运营成本&#xff0c;就成了大家关注的焦点。今天我们就从海外仓管理系统的费用这个角度&#xff0c;来帮助大家分析一…...

深度学习之学习率调度器Scheduler介绍

调度器是深度学习训练过程中非常重要的一部分,它用于动态调整模型的学习率,从而提高训练效率和最终性能。 1. 为什么需要学习率调度器? 深度学习训练中,学习率是一个非常关键的超参数。合适的学习率可以确保模型快速收敛并获得良好的性能。 但是在训练过程中,最优的学习率会随…...

蓝桥杯-AB路线(详细原创)

问题描述&#xff1a; 有一个由 N M 个方格组成的迷宫&#xff0c;每个方格写有一个字母 A 或者 B。小蓝站在迷宫左上角的方格&#xff0c;目标是走到右下角的方格。他每一步可以移动到上下左右相邻的方格去。 由于特殊的原因&#xff0c;小蓝的路线必须先走 K 个 A 格子、再…...

计算机字符编码的发展

目录 背景 发展 第一阶段&#xff1a;ASCII编码 第二阶段&#xff1a;扩展ASCII编码 第三阶段&#xff1a;各国编码 第四阶段&#xff1a;Unicode编码 第五阶段&#xff1a;UTF系列编码方式 相关扩展 背景 在计算机诞生初期&#xff0c;所有的数据都是基于二进制数&am…...

Java(六)——抽象类与接口

文章目录 抽象类和接口抽象类抽象类的概念抽象类的语法抽象类的特性抽象类的意义 接口接口的概念接口的语法接口的特性接口的使用实现多个接口接口与多态接口间的继承抽象类和接口的区别 抽象类和接口 抽象类 抽象类的概念 Java使用类实例化对象来描述现实生活中的实体&…...

【4.vi编辑器使用(下)】

一、vi编辑器的光标移动 二、vi编辑器查找命令 1、命令&#xff1a;:/string 查找字符串 n&#xff1a;继续查找 N&#xff1a;反向继续查找 /^the 查找以the开头的行 /end 查找以 查找以 查找以结尾的行 三、vi编辑器替换命令 1、语法: : s[范围,范围]str1/str2[g] g表示全…...

【数据结构】探索树中的奇妙世界

专栏介绍&#xff1a; 哈喽大家好&#xff0c;我是野生的编程萌新&#xff0c;首先感谢大家的观看。数据结构的学习者大多有这样的想法&#xff1a;数据结构很重要&#xff0c;一定要学好&#xff0c;但数据结构比较抽象&#xff0c;有些算法理解起来很困难&#xff0c;学的很累…...

搭建YOLOv10环境 训练+推理+模型评估

文章目录 前言一、环境搭建必要环境1. 创建yolov10虚拟环境2. 下载pytorch (pytorch版本>1.8)3. 下载YOLOv10源码4. 安装所需要的依赖包 二、推理测试1. 将如下代码复制到ultralytics文件夹同级目录下并运行 即可得到推理结果2. 关键参数 三、训练及评估1. 数据结构介绍2. 配…...

c++(一)

c&#xff08;一&#xff09; C与C有什么区别命名空间使用 输入输出流引用指针和引用的区别定义拓展 函数重载例子测试函数重载原理 参数默认值什么是参数默认值注意 在c中如何引入c的库动态内存分配new、delete与malloc、free的区别&#xff1f; C与C有什么区别 <1>都是…...

java面试中高频问题----1

一、乐观锁和悲观锁定义、场景怎么判断用什么&#xff1f; 1.乐观锁&#xff1a; 定义&#xff1a;乐观锁假设大多数情况下&#xff0c;资源不会发生冲突。因此&#xff0c;允许多个线程同时访问资源。 场景&#xff1a;读操作多&#xff0c;写操作少&#xff0c;数据冲突概率…...

ABB 控制柜

1&#xff0c;主计算机&#xff1a;相当于电脑的主机&#xff0c;用于存放系统和数据&#xff0c;需要24V直流电才能工作。执行用户编写的程序&#xff0c;控制机器人进行响应的动作。主计算机有很多接口&#xff0c;比如与编程PC连接的服务网口、用于连接示教器的网口、连接轴…...