猫狗分类识别模型建立②模型建立
一、导入依赖库
pip install opencv-python
pip install numpy
pip install tensorflow
pip install keras
二、模型建立
'''
pip install opencv-python
pip install numpy
pip install tensorflow
pip install keras
'''
import os
import xml.etree.ElementTree as ETimport cv2
import numpy as np
from keras.layers import Input
from keras.models import Model
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical# 设置文件夹路径
images_dir = "imgs/"
annotations_dir = "imgs/"
num_classes = 2 # 设置类别总数
input_shape = (128, 128, 3)
# 模型名称
model_name = "dog_cat.keras"
# 用于存储图像数据和标签的列表
images = []
labels = []"""
1 dog 狗
2 cat 猫
"""
# 假设我们有一个从标签文本到标签索引的映射字典
label_to_index = {"dog": 0,"cat": 1,# ... 添加其他类别
}# 遍历文件夹加载数据
for filename in os.listdir(images_dir):if filename.endswith(".png"):image_path = os.path.join(images_dir, filename)annotation_path = os.path.join(annotations_dir, filename[:-4] + ".xml")# 读取图像image = cv2.imread(image_path)image = cv2.resize(image, (128, 128)) # 调整图像大小images.append(image)# 解析XML标注文件获取标签tree = ET.parse(annotation_path)root = tree.getroot()object_element = root.find("object")if object_element is not None:label_text = object_element.find("name").textlabel_index = label_to_index.get(label_text)if label_index is not None:labels.append(label_index)else:print(f"Warning: Unknown label '{label_text}', skipping.")# 转换为NumPy数组并进行归一化
images = np.array(images) / 255.0
labels = np.array(labels)# 确保所有的标签都是有效的整数
if labels.dtype != int:raise ValueError("Labels must contain only integers.")labels = to_categorical(labels, num_classes=num_classes) # 假设num_classes是类别的总数# 使用Functional API定义模型
# 创建一个输入层,shape参数指定了输入数据的形状,input_shape是一个之前定义的变量,表示输入数据的维度。
inputs = Input(shape=input_shape)
# 下面的每一行都是通过一个层对数据进行处理,并将处理后的结果传递给下一个层。
# 对输入数据进行卷积操作,使用32个3x3的卷积核,并使用ReLU激活函数。结果赋值给变量x。
x = Conv2D(32, (3, 3), activation="relu")(inputs)
# 对x进行最大池化操作,池化窗口大小为2x2。这有助于减少数据的空间尺寸,从而减少计算量并提取更重要的特征。
x = MaxPooling2D(pool_size=(2, 2))(x)
# 再次进行卷积操作,这次使用64个3x3的卷积核,并继续使用ReLU激活函数。
x = Conv2D(128, (3, 3), activation="relu")(x)
# 再次进行最大池化操作,进一步减少数据的空间尺寸。
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x) # 将多维的数据展平为一维,以便后续可以连接到全连接层(或称为密集层)。
# 创建一个全连接层,包含64个神经元,并使用ReLU激活函数。这一层可以进一步提取和组合特征。
x = Dense(128, activation="relu")(x)
# 创建一个输出层,神经元的数量与类别的数量(num_classes)相等。使用softmax激活函数,将输出转换为概率分布。
outputs = Dense(num_classes, activation="softmax")(x)
# 使用输入和输出来创建模型实例
model = Model(inputs=inputs, outputs=outputs) # 通过指定输入和输出来定义模型的结构。
# 编译模型,指定优化器、损失函数和评估指标
# 使用Adam优化器、分类交叉熵损失函数,并监控准确性指标。
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])# 使用图像数据和标签训练模型
# 使用fit方法训练模型,指定训练数据、训练轮次(epochs)和批处理大小(batch_size)。
model.fit(images, labels, epochs=55, batch_size=512)# 保存训练好的模型到文件
# 将训练好的模型保存为HDF5文件,以便以后加载和使用。
model.save(model_name)
# keras.saving.save_model(model, "cnn_model.keras")
# model.save("cnn_model.h5")
三、文件结构及构建的模型
①文件结构

②建立后的模型

相关文章:
猫狗分类识别模型建立②模型建立
一、导入依赖库 pip install opencv-python pip install numpy pip install tensorflow pip install keras 二、模型建立 pip install opencv-python pip install numpy pip install tensorflow pip install kerasimport os import xml.etree.ElementTree as ETimpor…...
React Native 之 ToastAndroid(提示语)(二十一)
ToastAndroid 是 React Native 提供的一个特定于 Android 平台的 API,用于显示简单的消息提示(Toast)。 两个方法: 1. ToastAndroid.show(message, duration, gravity) message: 要显示的文本消息。duration: Toast 的持续时间&…...
合约之间调用-如何实现函数静态调用?
合约之间的函数调用 EOA,external owned account,外部账号,例如metamask调用最终总是由EOA发起的合约之间的调用使得一次完整的调用成为一个调用链条 合约间调用过程 调用者须持有被调用合约的地址得到被调用合约的信息将地址重载为被调用合…...
【5.基础知识和程序编译及调试】
一、GCC概述:是GUN推出的多平台编译器,可将C/C源程序编译成可执行文件。编译流程分为以下四个步骤: 1、预处理 2、编译 3、汇编 4、链接 注:编译器根据程序的扩展名来分辨编写源程序所用的语言。根据不同的后缀名对他们进行相…...
微信小程序(路由传参)
微信小程序的路由系统和其他Web应用类似,主要通过页面路径和URL参数进行页面导航和数据传递。下面详细介绍微信小程序路由的基本使用方法和相关技巧。 1. 基本页面导航 1.1 配置页面路径 在微信小程序的 app.json 文件中,需要配置小程序的页面路径。这…...
电脑显示不出网络
你的电脑是否在开机后显示不出网络,或者有网络消失的现象?今天和大家分享我学到的一个办法,希望对大家有用。 分析出现这类现象的原因:可能是电脑网卡松动了,电脑中存在静电流。 解决办法:先将电脑关机&am…...
random模块一
random模块 用于生成随机数。 random()返回[0,1)之间随机浮点数 例子: import randomfor i in range(5):print(random.random()) 结果: 0.5026620465128847 0.9841750667006002 0.5515465602585887 0.42796563433917456 0.2627959451391586 see…...
Spring OAuth2:开发者的安全盾牌!(下)
上文我们教了大家如何像海盗一样寻找宝藏,一步步解锁令牌的奥秘,今天将把更加核心的技巧带给大家一起学习,共同进步! 文章目录 6. 客户端凭证与密码模式6.1 客户端凭证模式应用适用于后端服务间通信 6.2 密码模式考量直接传递用户…...
kotlin基础之协程
Kotlin协程(Coroutines)是Kotlin提供的一种轻量级的线程模型,它允许我们以非阻塞的方式编写异步代码,而无需使用回调、线程或复杂的并发API。协程是一种用户态的轻量级线程,它可以在需要时挂起和恢复,从而有…...
法那科机器人M-900iA维修主要思路
发那科工业机器人是当今制造业中常用的自动化设备之一,而示教器是发那科机器人操作和维护的重要组成部分。 一、FANUC机械手示教器故障分类 1. 硬件故障 硬件故障通常是指发那科机器人M-900iA示教器本身的硬件问题,如屏幕损坏、按键失灵、电源故障等。 2…...
01_Spring Ioc(详解) + 思维导图
文章目录 一.概念实操Maven父子工程 二. IOC和DI入门案例【重点】1 IOC入门案例【重点】问题导入1.1 门案例思路分析1.2 实现步骤2.1 DI入门案例思路分析2.2 实现步骤2.3 实现代码2.4 图解演示 三、Bean的基础配置问题导入问题导入1 Bean是如何创建的【理解】2 实例化Bean的三种…...
Python开发Android手机APP
Kivy是一个开源的Python库,用于快速开发跨平台的触摸应用程序。它特别适合创建具有图形用户界面(GUI)的应用,尤其是那些需要在多种操作系统(如Windows、macOS、Linux、Android和iOS)上运行的多点触控应用。…...
Spring Cache自定义缓存key和过期时间
一、自定义全局缓存key和双冒号替换 使用 Redis的客户端 Spring Cache时,会发现生成 key中会多出一个冒号,而且有一个空节点的存在。 查看源码可知,这是因为 Spring Cache默认生成key的策略就是通过两个冒号来拼接。 同时 Spring Cache缓存…...
条件竞争漏洞
条件竞争漏洞 postMessage的客户端竞争条件 Summary AppCache可以被利用来强制浏览器加载后备的HTML页面,允许像Cookie填充(stuffing)这样的攻击,迫使出错并泄露敏感的URL。在负责任披露后,这个问题已经在各大浏览器中得到修复。对AWS S3和Google Cloud等云存储的上传策略(u…...
磁带存储:“不老的传说”依然在继续
现在是一个数据指数增长的时代,根据IDC数据预测,2025年全世界将产生175ZB的数据。 这里面大部分数据是不需要存储的,在2025预计每年需要存储11ZB的数据。换算个容易理解的说法,1ZB是10^18Bytes, 相当于要写5556万块容量18TB的硬盘…...
CentOS8环境下FTP服务器安装与配置
在本指南中,我们将一步步介绍如何在CentOS 8环境下安装和配置一个FTP服务器。FTP(文件传输协议)是一种网络传输协议,用于在网络中的计算机之间传输文件。虽然现在有更安全的传输方式,如SFTP或FTP over SSL,…...
C# 元组 Tuple
C# 元组 Tuple 元组创建元组访问元组元素命名元组元素元组的类型使用元组作为方法返回值 解构解构元组的基本用法解构部分元组解构方法 元组 在C#中,元组(Tuple)是一种数据结构,它允许你将多个值组合成一个单一的对象。 元组在处…...
100个投资者99个选择使用这款EA,WeTrade发现1个事实
为什么100个投资者会有99个选择使用这款EA,是因为这款EA能提供两个版本吗?是因为能控制风险吗?都不是,WeTrade发现1个事实才是这么多投资者选择的原因,那就是能实现100%的盈利率。 我们都知道外汇狙击手EA提供两种版本,分别是标…...
爬虫面试手册
爬虫面试手册 薪资13~20k 岗位职责: 负责公司数据平台的数据采集、运维优化;负责自动化脚本,爬虫脚本;研究数据采集策略和防屏蔽规则,提升数据采集系统的稳定性、可扩展性,提高抓取的效率和质量; 岗位要求 本科及…...
k8s cephfs(动态pvc)
官方参考文档:GitHub - ceph/ceph-csi at v3.9.0 测试版本 Ceph Version Ceph CSI Version Container Orchestrator Name Version Tested v17.2.7 v3.9.0 Kubernetes v1.25.6 安装Ceph-csi Step 1 Download GitHub - ceph/ceph-csi at v3.9.0 rootsd-k8s…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
