当前位置: 首页 > news >正文

SimPO: Simple Preference Optimization with a Reference-Free Reward

https://github.com/princeton-nlp/SimPO

简单代码

class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss = paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit = paddle.nn.functional.log_softmax(neg_logit, -1)pos_logit = paddle.nn.functional.log_softmax(pos_logit, -1)batch_indices = paddle.arange(neg_lab.shape[0]).unsqueeze(1).tile([1, neg_lab.shape[1]])seq_indices = paddle.arange(neg_lab.shape[1]).unsqueeze(0).tile([neg_lab.shape[0], 1])indices = paddle.stack([batch_indices, seq_indices, neg_lab], axis=-1)# 使用 gather_nd 来提取对应的 logitneg_logit_selected = paddle.mean(paddle.gather_nd(neg_logit, indices),-1)# 选择标签样本batch_indices = paddle.arange(pos_lab.shape[0]).unsqueeze(1).tile([1, pos_lab.shape[1]])seq_indices = paddle.arange(pos_lab.shape[1]).unsqueeze(0).tile([pos_lab.shape[0], 1])indices = paddle.stack([batch_indices, seq_indices, pos_lab], axis=-1)# 使用 gather_nd 来提取对应的 logitpos_logit_selected = paddle.mean(paddle.gather_nd(pos_logit, indices),-1)pi_logratios = pos_logit_selected - neg_logit_selectedgamma_logratios = gamma / betalogits = pi_logratios - gamma_logratioslosses = (-paddle.nn.functional.log_sigmoid(beta * logits) * (1 - 0.3)-paddle.nn.functional.log_sigmoid(-beta * logits) * 0.3)# chosen_rewards = beta * pos_logit_selected# rejected_rewards = beta *neg_logit_selectedreturn losses.mean()

这段代码定义了一个名为simpo的类,继承自paddle.nn.Layer。在类的构造函数中,初始化了一个交叉熵损失函数loss

forward函数是模型的前向传播函数。它接收四个参数:neg_logitneg_labpos_logitpos_lab,以及betagamma。其中,neg_logitpos_logit是模型输出的负样本和正样本的预测分数,neg_labpos_lab是对应的标签。

在函数内部,首先对neg_logitpos_logit使用log_softmax函数进行处理,将预测分数转换为对应类别的概率。然后,使用arange函数生成对应的索引,通过gather_nd函数提取出标签样本对应的预测概率。这里使用了mean函数计算平均值,得到负样本和正样本的选中概率。

接下来,计算pi_logratios,即正样本选中概率减去负样本选中概率。然后,计算gamma_logratios,即gamma除以beta。最后,将pi_logratiosgamma_logratios相减得到logits

根据logits计算损失。损失的计算采用了公式(-log_sigmoid(beta * logits) * (1 - 0.3) -log_sigmoid(-beta * logits) * 0.3),其中log_sigmoid函数是对beta * logits-beta * logits进行log sigmoid函数的运算。最终,使用mean函数计算损失的平均值,并返回。

根据文档内容,我梳理了以下大纲:
一、引言

  1. 背景介绍:从人类反馈中学习是关键,RLHF是一种流行的方法,DPO是一种简单的离线优化算法。
  2. 问题提出:DPO存在训练和推理指标不一致的问题,可能导致次优性能。
  3. 本文贡献:提出SimPO,一个简单有效的离线偏好优化算法,通过直接将奖励函数与生成指标对齐,无需参考模型,同时引入目标奖励间隔,提高算法性能。
    二、SimPO: 简单偏好优化
  4. 背景:介绍DPO算法。
  5. 简单的参考无关奖励:提出使用平均对数似然作为奖励,与生成指标对齐,无需参考模型。
  6. SimPO目标:推导SimPO目标函数,引入目标奖励间隔。
    三、实验设置
  7. 模型与训练设置:使用Llama3和Mistral进行训练,设置Base和Instruct两种。
  8. 评估基准:使用AlpacaEval 2、Arena-Hard和MT-Bench。
  9. 基准模型:与DPO、IPO、KTO、ORPO、R-DPO进行比较。
    四、实验结果
  10. SimPO在所有基准上持续显著优于其他方法。
  11. Instruct设置引入了显著的性能提升。
  12. SimPO的两个关键设计都很重要。
  13. 长度标准化防止了长度剥削。
  14. 目标奖励间隔对性能有影响。
  15. SimPO优于DPO的原因分析。
    五、相关研究
  16. RLHF相关研究。
  17. 偏好优化相关研究。
    六、讨论
  18. 结论。
  19. 限制与未来工作。

相关文章:

SimPO: Simple Preference Optimization with a Reference-Free Reward

https://github.com/princeton-nlp/SimPO 简单代码 class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit paddle.n…...

CDH6.3.2安装文档

前置环境: 操作系统: CentOS Linux release 7.7 java JDK : 1.8.0_231 1、准备工作 准备以下安装包: Cloudera Manager: cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cloudera-manager-daemons-6.3.1-1466458.el…...

Java实战入门:深入解析Java中的 `Arrays.sort()` 方法

文章目录 一、方法定义参数说明返回值 二、使用场景三、实现原理四、示例代码示例一:对整型数组排序示例二:对字符串数组排序示例三:对自定义对象数组排序 五、注意事项六、总结 在Java编程中,Arrays.sort() 方法是一个非常常用的…...

JavaScript的垃圾回收机制

No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 一、垃圾…...

小程序使用Canvas设置文字竖向排列

在需要使用的js页面引入js文件,传入对应参数即可 /** * 文本竖向排列 */ function drawTextVertical(context, text, x, y) {var arrText text.split();var arrWidth arrText.map(function (letter) {return 26; // 字体间距,需要自定义可以自己加参数,根据传入参数进行…...

GPT-4o:重塑人机交互的未来

一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能(AI)领域,自然语言处理(NLP)技术一直被视为连接人类与机器的桥梁。近年来,随着深度学习技术的快速发展,NLP领域迎来了前所未有的变革…...

大语言模型拆解——Tokenizer

1. 认识Tokenizer 1.1 为什么要有tokenizer? 计算机是无法理解人类语言的,它只会进行0和1的二进制计算。但是呢,大语言模型就是通过二进制计算,让你感觉计算机理解了人类语言。 举个例子:单1,双2&#x…...

Linux自动挂载服务autofs讲解

1.产生原因 2.配置文件讲解 总结:配置客户端,先构思好要挂载的目录如:/abc/cb 然后在autofs.master中编辑: /abc(要挂载的主目录) /etc/qwe(在这个文件里去找要挂载的副目录,这个名…...

堆结构知识点复习——玩转堆结构

前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 本篇内容适合已经学完C语言数组和函数部分的友友们观看。 目录 什么是堆 建堆算法…...

JS数据类型运算符标准库

目录 数据类型运算符标准库对象Object对象属性描述对象Array对象包装对象Boolean对象Number对象String对象Math对象Date对象...

单片机之从C语言基础到专家编程 - 4 C语言基础 - 4.13数组

C语言中,有一类数据结构,它可以存储一组相同类型的元素,并且可以通过索引访问这些元素,没错,这类数据结构就是数组。数组可以说是C语言中非常重要的数据结构之一了。使用数组可以是程序逻辑更加清晰,也更加…...

【码银送书第二十期】《游戏运营与出海实战:策略、方法与技巧》

市面上的游戏品种繁杂,琳琅满目,它们是如何在历史的长河中逐步演变成今天的模式的呢?接下来,我们先回顾游戏的发展史,然后按照时间轴来叙述游戏运营的兴起。 作者:艾小米 本文经机械工业出版社授权转载&a…...

String 类

目录: 一. 认识 String 类 二. String 类的基本用法 三. String对象的比较 四.字符串的不可变性 五. 认识 StringBuffer 和 StringBuilder 一. 认识 String 类: 在C语言中已经涉及到字符串了,但是在C语言中要表示字符串只能使用字符数组或者…...

Chromebook Plus中添加了Gemini?

Chromebook Plus中添加了Gemini? 前言 就在5月29日,谷歌宣布了一项重大更新,将其Gemini人工智能技术集成到Chromebook Plus笔记本电脑中。这项技术此前已应用于谷歌的其他设备。华硕和惠普已经在市场上销售的Chromebook Plus机型,…...

Git Large File Storage (LFS) 的安装与使用

Git Large File Storage [LFS] 的安装与使用 1. An open source Git extension for versioning large files2. Installing on Linux using packagecloud3. Getting Started4. Error: Failed to call git rev-parse --git-dir: exit status 128References 1. An open source Git…...

使用国产工作流引擎,有那些好处?

使用国产工作流引擎的好处主要体现在以下几个方面: 符合企业独特业务: 国产工作流引擎可以深入挖掘和理解企业内部各项业务流程,精细化地定义流程模型和规则,实现“以流程驱动业务”的目标。这有助于企业更好地满足其独特的业务…...

掌握 Go 语言:使用 net/http/httptrace 包优化HTTP请求

掌握 Go 语言:使用 net/http/httptrace 包优化HTTP请求 介绍net/http/httptrace 包的基础概述适用场景 使用httptrace进行网络请求追踪配置httptrace的基本步骤示例:创建一个简单的HTTP客户端,使用httptrace监控连接 示例:追踪HTT…...

探秘Flask中的表单数据处理

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言 二、Flask中的表单处理机制 三、Flask表单处理实战 四、处理表单数据的注意事项…...

java —— 包装类及拆箱、装箱

java 当中有 8 种基本类型对应其相应的包装类,分别如下: intIntegerbyteByteshortShortlongLongfloatFloatdoubleDoublecharCharacterbooleanBoolean 一、装箱 两种装箱方法: public static void main(String[] args) {Integer anew Inte…...

运算符重载(下)

目录 前置和后置重载前置的实现Date& Date::operator()代码 后置的实现Date Date::operator(int )代码 前置--和后置--重载前置--的实现Date& Date::operator--( )代码 后置--的实现Date Date::operator--(int )代码 流插入运算符重载流插入运算符重载的实现流提取运算…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...