记一次 .NET某工业设计软件 崩溃分析
一:背景
1. 讲故事
前些天有位朋友找到我,说他的软件在客户那边不知道什么原因崩掉了,从windows事件日志看崩溃在 clr 里,让我能否帮忙定位下,dump 也抓到了,既然dump有了,接下来就上 windbg 分析吧。
二:WinDbg 分析
1. 为什么崩溃在 clr
一般来说崩溃在clr里都不是什么好事情,这预示着 clr 在执行自身代码的时候抛了异常,即灾难的 ExecutionEngineException,可以用 !t 验证下。
0:000> !t
ThreadCount: 18
UnstartedThread: 0
BackgroundThread: 7
PendingThread: 0
DeadThread: 11
Hosted Runtime: noLock ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain Count Apt Exception0 1 52e8 18998d50 24220 Preemptive 639B0D58:00000000 18c361f0 0 STA System.ExecutionEngineException 1f421120...
既然是灾难性异常,那为什么会出现呢?可以用 !analyze -v 观察下。
0:000> !analyze -v
CONTEXT: 0115a98c -- (.cxr 0x115a98c)
eax=00000000 ebx=00000000 ecx=00000000 edx=18c364a4 esi=00030000 edi=18998d50
eip=552bfff1 esp=0115ae6c ebp=0115af24 iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010246
clr!VirtualCallStubManager::ResolveWorker+0x33:
552bfff1 8bb968020000 mov edi,dword ptr [ecx+268h] ds:002b:00000268=????????
Resetting default scopeREAD_ADDRESS: 00000268 STACK_TEXT:
0115af24 552c0698 0115afdc 1f4222c0 00030000 clr!VirtualCallStubManager::ResolveWorker+0x33
0115affc 552c070b 0115b010 1f4222c0 00030000 clr!VSD_ResolveWorker+0x1d2
0115b024 28a3a949 639b0d38 00000000 00000000 clr!ResolveWorkerAsmStub+0x1b
0115b0a4 28a3a8bd 00000000 00000000 00000000 xxxx!xxx
...
我去,真无语了,我卦中数据看,这是一个接口Stub调用的崩溃,在这里崩溃真的是少之又少,从汇编代码 edi,dword ptr [ecx+268h] ds:002b:00000268=????????
上看就是因为 ecx =0 导致的,接下来观察下方法的汇编代码。
从汇编上看这个 ecx 其实就是这个方法的 this 指针,那为什么 this =null 呢?这就很奇葩了。
2. 为什么 this =null
要想找到这个答案,只能看clr源代码,简化后如下:
PCODE VSD_ResolveWorker(TransitionBlock* pTransitionBlock,TADDR siteAddrForRegisterIndirect,size_t token)
{...VirtualCallStubManager::StubKind stubKind = VirtualCallStubManager::SK_UNKNOWN;VirtualCallStubManager* pMgr = VirtualCallStubManager::FindStubManager(callSiteTarget, &stubKind);...target = pMgr->ResolveWorker(&callSite, protectedObj, representativeToken, stubKind);
}
从卦中代码看,问题就是 pMgr=null 导致的,无语了,这个 VirtualCallStubManager::FindStubManager
方法的本意就是根据 callSite的stub的前缀找到对应的 虚调用管理器
,它的核心逻辑如下:
StubKind getStubKind(PCODE stubStartAddress, BOOL usePredictStubKind = TRUE)
{StubKind predictedKind = (usePredictStubKind) ? predictStubKind(stubStartAddress) : SK_UNKNOWN;...if (predictedKind == SK_LOOKUP){if (isLookupStub(stubStartAddress))return SK_LOOKUP;}...return SK_UNKNOWN;
}VirtualCallStubManager::StubKind VirtualCallStubManager::predictStubKind(TADDR stubStartAddress)
{StubKind stubKind = SK_UNKNOWN;WORD firstWord = *((WORD*)stubStartAddress);if (firstWord == 0x05ff){stubKind = SK_DISPATCH;}else if (firstWord == 0x6850){stubKind = SK_LOOKUP;}else if (firstWord == 0x8b50){stubKind = SK_RESOLVE;}return stubKind;
}
接下来需要找到 stubStartAddress 的地址是多少?这个只需要提取 ResolveWorker 方法的第一个参数 callSite 即可。
0:000> dp poi(0115afdc) L1
0c740040 0c7460120:000> u 0c746012
0c746012 50 push eax
0c746013 6800000300 push 30000h
0c746018 e9d3a6b748 jmp clr!ResolveWorkerAsmStub (552c06f0)
0c74601d 0000 add byte ptr [eax],al
0c74601f 0000 add byte ptr [eax],al
0c746021 005068 add byte ptr [eax+68h],dl
0c746024 0000 add byte ptr [eax],al
0c746026 46 inc esi0:000> dp 0c746012 L1
0c746012 00006850
对比刚才的代码既然都返回来了 SK_LOOKUP
那为什么还是 SK_UNKNOWN
呢? 这个也可以通过在线程栈上找到 &stubKind 变量得到验证。
0:000> uf 552c0698
...
clr!VSD_ResolveWorker+0x1ab:
552c065f 8b85e0ffffff mov eax,dword ptr [ebp-20h]
552c0665 83a5ecffffff00 and dword ptr [ebp-14h],0
552c066c 8d95ecffffff lea edx,[ebp-14h]
552c0672 8b08 mov ecx,dword ptr [eax]
552c0674 e858feffff call clr!VirtualCallStubManager::FindStubManager (552c04d1)
552c0679 ffb5ecffffff push dword ptr [ebp-14h]
552c067f 51 push ecx
552c0680 8bcc mov ecx,esp
552c0682 8931 mov dword ptr [ecx],esi
552c0684 ffb5e8ffffff push dword ptr [ebp-18h]
552c068a 8d8de0ffffff lea ecx,[ebp-20h]
552c0690 51 push ecx
552c0691 8bc8 mov ecx,eax
552c0693 e823f9ffff call clr!VirtualCallStubManager::ResolveWorker (552bffbb)
552c0698 8bf0 mov esi,eax
...0:000> dp 0115affc-0x14 L1
0115afe8 00000000
我感觉这逻辑也只有clr团队帮忙解释,我已经搞不清楚了,接下来我们回头看托管方法,看能不能继续下去。
3. 在托管层寻找突破口
高级调试就是这样,一个方向走不通就需要在另一个方向上突破,接下来使用 !clrstack
观察一下。
0:000> !clrstack
OS Thread Id: 0x52e8 (0)
Child SP IP Call Site
0115af50 775c2aac [GCFrame: 0115af50]
0115afac 775c2aac [StubDispatchFrame: 0115afac]xxx.GetListDrawerType(System.String)
0115b02c 28a3a949 xxx.PluginInvoker.InvokeMothod[[System.__Canon, mscorlib]](System.String, System.Object[])
0115b0b0 28a3a8bd xxx.xxx.OnFinishSizeCheck(Int64)
...
从调用栈来看,貌似是用反射
来实现功能增强,不管怎么说先看下xxxCheck
方法干了什么?简化后的代码如下:
public string OnFinishSizeCheck(long uuid)
{return PluginInvoker.InvokeMothod<string>("xxxCheck", new object[1] { uuid });
}public static T InvokeMothod<T>(string methodName, params object[] args)
{IPluginInvoker pluginInvoker = GetPluginInvoker();return (T)pluginInvoker.InvokeMothod(methodName, args);
}
从代码上可以看到原来是使用 (T)pluginInvoker.InvokeMothod(methodName, args);
实现的接口调用,在coreclr层面也能观察得到,找到对象 1f4222c0
之后按图索骥即可。
0:000> !do 1f4222c0
Name: xxx.xxx.BusinessAppDomainInvoker
MethodTable: 0c73a144
EEClass: 0c6d6f0c
Size: 12(0xc) bytes
File: E:\xxx\xxx.dll
Fields:MT Field Offset Type VT Attr Value Name
0c73a4e8 400000a 4 ....AppDomainManager 0 instance 1f42236c appDomainManager
0c73a2dc 4000009 18 ..., xxx]] 0 static 1f422214 lazy0:000> !dumpmt -md 0c73a144
EEClass: 0c6d6f0c
Module: 0c7383dc
Name: xxx.xxx.BusinessAppDomainInvoker
mdToken: 02000006
File: E:\xxx\xxx.dll
BaseSize: 0xc
ComponentSize: 0x0
Slots in VTable: 10
Number of IFaces in IFaceMap: 1
--------------------------------------
MethodDesc TableEntry MethodDe JIT Name...
0c6c3400 0c73a110 JIT xxx.xxx.InvokeMothod(System.String, System.Object[])0:000> !do poi(0c73a144+0x24)
Name: xxx.IPluginInvoker
MethodTable: 0c739f30
EEClass: 0c6d6d34
Size: 0(0x0) bytes
File: E:\xxx\xxx.dll
Fields:
None
ThinLock owner 1 (18998d50), Recursive 0
对比那个 token=30000h
发现什么地方都没有问题,奇葩的就是一个简单接口调用就出现了问题,仔细观察代码之后发现了两个和别人不一样的地方。
4. 与众不同的地方在哪里
第一个是他的程序是多 AppDomain 的,可以用 !dumpdomain
观察。
0:000> !dumpdomain
--------------------------------------
System Domain: 55a6caa0
...
--------------------------------------
Shared Domain: 55a6c750
LowFrequencyHeap: 55a6cdc4
Stage: OPEN
--------------------------------------
Domain 1: 18b04690
LowFrequencyHeap: 18b04afc
Name: DefaultDomain
--------------------------------------
Domain 2: 18c361f0
LowFrequencyHeap: 18c3665c
...
第二个是我发现托管调用栈上还有很多 托管C++
,这种混合编程真的是无语了。
到这里我想到了三个办法:
1)如果可以先把接口方法预热,clr会直接把方法入口塞到汇编里,就不会再走clr底层逻辑了。
2)能否将 托管C++ 和 C# 隔离,不要混合编程。
3)重点观察下多Domain下这个托管调用是不是有什么问题。
三:总结
这种 多domain + 托管C++混合C#
编程,真出问题了基本上就是无解,一般人hold不住,无语了。
相关文章:

记一次 .NET某工业设计软件 崩溃分析
一:背景 1. 讲故事 前些天有位朋友找到我,说他的软件在客户那边不知道什么原因崩掉了,从windows事件日志看崩溃在 clr 里,让我能否帮忙定位下,dump 也抓到了,既然dump有了,接下来就上 windbg …...

2020 6.s081——Lab5:Lazy page allocation
再来是千年的千年 不变是眷恋的眷恋 飞越宇宙无极限 我们永不说再见 ——超兽武装 完整代码见:SnowLegend-star/6.s081 at lazy (github.com) Eliminate allocation from sbrk() (easy) 顾名思义,就是去掉sbrk()中调用growproc()的部分。1s完事儿。 Laz…...

华为认证学习笔记:生成树
以太网交换网络中为了进行链路备份,提高网络可靠性,通常会使用冗余链路。但是使用冗余链路会在交换网络上产生环路,引发广播风暴以及MAC地址表不稳定等故障现象,从而导致用户通信质量较差,甚至通信中断。为解决交换网络…...
leetcode 97.交错字符串
思路:LCS 其实也是同一个类型的题目,一般涉及到这种子序列的字符串问题的时候,状态的设置基本上都应该是以...结尾为状态的。这里同样,设置用dp[i][j]为s1,s2字符以i,j结尾能否拼接成s3[ij]。 那么,首先就…...
The Missing Semester ( Shell 工具和脚本 和 Vim)
管道符号 (1)管道符号 | 将前一个命令的输出作为下一个命令的输入 例如: 以下为 ./semester输出中提取包含 "Last-Modified" 的行并写入文件 last-modified.txt./semester | grep "Last-Modified" > ~/last-modif…...

【Uniapp微信小程序】自定义水印相机、微信小程序地点打卡相机
效果图 template 下方的image图片自行寻找替换! <template><view><camerav-if"!tempImagePath && cameraHeight ! 0":resolution"high":frame-size"large":device-position"device":flash"f…...
SimPO: Simple Preference Optimization with a Reference-Free Reward
https://github.com/princeton-nlp/SimPO 简单代码 class simpo(paddle.nn.Layer):def __init__(self):super(OrPoLoss, self).__init__()self.loss paddle.nn.CrossEntropyLoss()def forward(self,neg_logit, neg_lab, pos_logit, pos_lab,beta,gamma):neg_logit paddle.n…...

CDH6.3.2安装文档
前置环境: 操作系统: CentOS Linux release 7.7 java JDK : 1.8.0_231 1、准备工作 准备以下安装包: Cloudera Manager: cloudera-manager-agent-6.3.1-1466458.el7.x86_64.rpm cloudera-manager-daemons-6.3.1-1466458.el…...

Java实战入门:深入解析Java中的 `Arrays.sort()` 方法
文章目录 一、方法定义参数说明返回值 二、使用场景三、实现原理四、示例代码示例一:对整型数组排序示例二:对字符串数组排序示例三:对自定义对象数组排序 五、注意事项六、总结 在Java编程中,Arrays.sort() 方法是一个非常常用的…...

JavaScript的垃圾回收机制
No.内容链接1Openlayers 【入门教程】 - 【源代码示例300】 2Leaflet 【入门教程】 - 【源代码图文示例 150】 3Cesium 【入门教程】 - 【源代码图文示例200】 4MapboxGL【入门教程】 - 【源代码图文示例150】 5前端就业宝典 【面试题详细答案 1000】 文章目录 一、垃圾…...

小程序使用Canvas设置文字竖向排列
在需要使用的js页面引入js文件,传入对应参数即可 /** * 文本竖向排列 */ function drawTextVertical(context, text, x, y) {var arrText text.split();var arrWidth arrText.map(function (letter) {return 26; // 字体间距,需要自定义可以自己加参数,根据传入参数进行…...

GPT-4o:重塑人机交互的未来
一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能(AI)领域,自然语言处理(NLP)技术一直被视为连接人类与机器的桥梁。近年来,随着深度学习技术的快速发展,NLP领域迎来了前所未有的变革…...

大语言模型拆解——Tokenizer
1. 认识Tokenizer 1.1 为什么要有tokenizer? 计算机是无法理解人类语言的,它只会进行0和1的二进制计算。但是呢,大语言模型就是通过二进制计算,让你感觉计算机理解了人类语言。 举个例子:单1,双2&#x…...

Linux自动挂载服务autofs讲解
1.产生原因 2.配置文件讲解 总结:配置客户端,先构思好要挂载的目录如:/abc/cb 然后在autofs.master中编辑: /abc(要挂载的主目录) /etc/qwe(在这个文件里去找要挂载的副目录,这个名…...

堆结构知识点复习——玩转堆结构
前言:堆算是一种相对简单的数据结构, 本篇文章将详细的讲解堆中的知识点, 包括那些我们第一次学习堆的时候容易忽略的内容, 本篇文章会作为重点详细提到。 本篇内容适合已经学完C语言数组和函数部分的友友们观看。 目录 什么是堆 建堆算法…...
JS数据类型运算符标准库
目录 数据类型运算符标准库对象Object对象属性描述对象Array对象包装对象Boolean对象Number对象String对象Math对象Date对象...
单片机之从C语言基础到专家编程 - 4 C语言基础 - 4.13数组
C语言中,有一类数据结构,它可以存储一组相同类型的元素,并且可以通过索引访问这些元素,没错,这类数据结构就是数组。数组可以说是C语言中非常重要的数据结构之一了。使用数组可以是程序逻辑更加清晰,也更加…...

【码银送书第二十期】《游戏运营与出海实战:策略、方法与技巧》
市面上的游戏品种繁杂,琳琅满目,它们是如何在历史的长河中逐步演变成今天的模式的呢?接下来,我们先回顾游戏的发展史,然后按照时间轴来叙述游戏运营的兴起。 作者:艾小米 本文经机械工业出版社授权转载&a…...

String 类
目录: 一. 认识 String 类 二. String 类的基本用法 三. String对象的比较 四.字符串的不可变性 五. 认识 StringBuffer 和 StringBuilder 一. 认识 String 类: 在C语言中已经涉及到字符串了,但是在C语言中要表示字符串只能使用字符数组或者…...

Chromebook Plus中添加了Gemini?
Chromebook Plus中添加了Gemini? 前言 就在5月29日,谷歌宣布了一项重大更新,将其Gemini人工智能技术集成到Chromebook Plus笔记本电脑中。这项技术此前已应用于谷歌的其他设备。华硕和惠普已经在市场上销售的Chromebook Plus机型,…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...