NeuralForecast 推理 - 数据集从文件dataset.pkl读
NeuralForecast 推理 - 数据集从文件dataset.pkl读
flyfish
from ray import tune
from neuralforecast.core import NeuralForecast
from neuralforecast.auto import AutoMLP
from neuralforecast.models import NBEATS, NHITS
import torch
import torch.nn as nn
import os
import pickle
import warnings
from copy import deepcopy
from itertools import chain
from typing import Any, Dict, List, Optional, Unionimport fsspec
import numpy as np
import pandas as pdfrom neuralforecast.models import (GRU,LSTM,RNN,TCN,DeepAR,DilatedRNN,MLP,NHITS,NBEATS,NBEATSx,DLinear,NLinear,TFT,VanillaTransformer,Informer,Autoformer,FEDformer,StemGNN,PatchTST,TimesNet,TimeLLM,TSMixer,
)
MODEL_FILENAME_DICT = {"autoformer": Autoformer,"autoautoformer": Autoformer,"deepar": DeepAR,"autodeepar": DeepAR,"dlinear": DLinear,"autodlinear": DLinear,"nlinear": NLinear,"autonlinear": NLinear,"dilatedrnn": DilatedRNN,"autodilatedrnn": DilatedRNN,"fedformer": FEDformer,"autofedformer": FEDformer,"gru": GRU,"autogru": GRU,"informer": Informer,"autoinformer": Informer,"lstm": LSTM,"autolstm": LSTM,"mlp": MLP,"automlp": MLP,"nbeats": NBEATS,"autonbeats": NBEATS,"nbeatsx": NBEATSx,"autonbeatsx": NBEATSx,"nhits": NHITS,"autonhits": NHITS,"patchtst": PatchTST,"autopatchtst": PatchTST,"rnn": RNN,"autornn": RNN,"stemgnn": StemGNN,"autostemgnn": StemGNN,"tcn": TCN,"autotcn": TCN,"tft": TFT,"autotft": TFT,"timesnet": TimesNet,"autotimesnet": TimesNet,"vanillatransformer": VanillaTransformer,"autovanillatransformer": VanillaTransformer,"timellm": TimeLLM,"tsmixer": TSMixer,"autotsmixer": TSMixer,
}
#model_path1 = "checkpoints\\test_run\\automlp_0.ckpt"
model_path = "checkpoints\\test_run"dataset_path = "checkpoints\\test_run\\dataset.pkl"def load(path, verbose=False, **kwargs):# Standarize path without '/'if path[-1] == "/":path = path[:-1]fs, _, paths = fsspec.get_fs_token_paths(path)files = [f.split("/")[-1] for f in fs.ls(path) if fs.isfile(f)]# Load modelsmodels_ckpt = [f for f in files if f.endswith(".ckpt")]if len(models_ckpt) == 0:raise Exception("No model found in directory.")if verbose:print(10 * "-" + " Loading models " + 10 * "-")models = []try:with fsspec.open(f"{path}/alias_to_model.pkl", "rb") as f:alias_to_model = pickle.load(f)except FileNotFoundError:alias_to_model = {}for model in models_ckpt:model_name = model.split("_")[0]model_class_name = alias_to_model.get(model_name, model_name)models.append(MODEL_FILENAME_DICT[model_class_name].load_from_checkpoint(f"{path}/{model}", **kwargs))if verbose:print(f"Model {model_name} loaded.")return modelsmodels = load(model_path,verbose=True)
print(models[0])
model = models[0]
model.eval()# Load dataset
def load_dataset(path, verbose=True):try:with fsspec.open(f"{path}/dataset.pkl", "rb") as f:dataset = pickle.load(f)print(dataset)if verbose:print("Dataset loaded.")except FileNotFoundError:dataset = Noneif verbose:print("No dataset found in directory.")return datasetdata=pd.read_pickle(dataset_path)
print("data:",data)trimmed_dataset = load_dataset(model_path)
print(trimmed_dataset)#TimeSeriesDataset(n_data=96, n_groups=1)step_size =1
model_fcsts = model.predict(trimmed_dataset, step_size=step_size)
print(model_fcsts)
相关文章:
NeuralForecast 推理 - 数据集从文件dataset.pkl读
NeuralForecast 推理 - 数据集从文件dataset.pkl读 flyfish from ray import tune from neuralforecast.core import NeuralForecast from neuralforecast.auto import AutoMLP from neuralforecast.models import NBEATS, NHITS import torch import torch.nn as nn import …...
TS-类型转换(显式)
1.将其他类型转换为布尔类型 要将其他类型转换为布尔类型,只需要将待转换的值传入Boolean()函数 var msg: string "ok"; var msgToBollean: boolean Boolean(msg); //得到trueBoolean()函数会判断传入的值是空值还是非空值。 若表示非空值࿰…...
protobufjs 配置踩坑记录
本文主要是小程序使用PB协议,以下时博主遇到的问题以及解决办法。 1、安装protobufjs npm install --save protobufjs 注意:我之前也使用过 npm install -g protobufjs去安装,但是出现以下的问题,关键是我使用sudo 清除相关文件…...
freeswitch官方仓库
概述 在使用源代码编译安装freeswitch的过程中,我们经常需要一些依赖库,其中freeswitch官方的yum源仓库是最齐全最方便的。 但是,freeswitch仓库的配置和使用需要先在signalwire网站注册账号并获取PAT(personal access token&am…...
element ui el-calendar日历组件完整代码
el-calendar日历组件完整代码 1. 说在前面2. 日历整体代码3. 编辑与新增 1. 说在前面 最近一直忙于上班,没咋看博客,发现很多小伙伴都要日历组件的代码,于是今天抽空给大家整理一下,为爱发电!日历组件的原文在这里&am…...
初识java——javaSE(8)异常
文章目录 一 异常的概念与体系结构1.1 什么是异常?1.2 异常的体系结构!1.3 编译时异常与运行时异常与Error编译时异常:异常声明:throws关键字 运行时异常:什么是Error? 二 处理异常2.1 异常的抛出:throw(注…...
C语言面试题11至20题
探索编程面试题:深度解析11至20题 在编程面试中,经常会遇到一些需要深入理解计算机科学基础和编程原理的问题。以下是对一些常见面试题的详细解答,涵盖递归、循环控制、内存管理等关键概念。 11. 递归函数定义没有问题,递归深层…...
视频汇聚EasyCVR综合安防平台对接GA/T1400公安视图库及应用方案
随着科技的不断进步,视频监控系统在公共安全领域发挥着越来越重要的作用。GA/T1400公安视图库作为公安视频图像信息应用系统的标准,为视频监控系统的对接提供了统一的规范和技术要求。 GA/T1400标准的应用范围广泛,涵盖了公安系统的视频图像信…...
在Github找自己想要的的项目
点击进入github 1.首先进入到github的首页;搜索框搜(先关键字搜索)in:name 你的找的项目 比如: in:name Sping Boot2.进一步检索(点赞数高的) in:name Sping Boot star:>1000 3.如何要找最新的&…...
第16篇:JTAG UART IP应用<三>
Q:如何通过HAL API函数库访问JTAG UART? A:Quartus硬件工程以及Platform Designer系统也和第一个Nios II工程--Hello_World的Quartus硬件工程一样。 Nios II软件工程对应的C程序调用HAL API函数,如open用于打开和创建文件&#…...
Python——Selenium快速上手+方法(一站式解决问题)
目录 前言 一、Selenium是什么 二、Python安装Selenium 1、安装Selenium第三方库 2、下载浏览器驱动 3、使用Python来打开浏览器 三、Selenium的初始化 四、Selenium获取网页元素 4.1、获取元素的实用方法 1、模糊匹配获取元素 & 联合多个样式 2、使用拉姆达表达式 3、加上…...
2024最新群智能优化算法:大甘蔗鼠算法(Greater Cane Rat Algorithm,GCRA)求解23个函数,提供MATLAB代码
一、大甘蔗鼠算法 大甘蔗鼠算法(Greater Cane Rat Algorithm,GCRA)由Jeffrey O. Agushaka等人于2024年提出,该算法模拟大甘蔗鼠的智能觅食行为。 参考文献 [1]Agushaka J O, Ezugwu A E, Saha A K, et al. Greater Cane Rat Alg…...
苍穹外卖数据可视化
文章目录 1、用户统计2、订单统计3、销量排名Top10 1、用户统计 所谓用户统计,实际上统计的是用户的数量。通过折线图来展示,上面这根蓝色线代表的是用户总量,下边这根绿色线代表的是新增用户数量,是具体到每一天。所以说用户统计…...
AWS需要实名吗?
AWS作为全球领先的云计算服务提供商,对于实名认证有着严格的要求。实名认证是指用户在使用AWS服务时需要提供真实有效的个人身份信息,以便AWS能够对用户的身份进行验证和管理。对于AWS而言,实名认证是确保用户安全和服务质量的重要环节&#…...
Android下HWC以及drm_hwcomposer普法(下)
Android下HWC以及drm_hwcomposer普法(下) 引言 不容易啊,写到这里。经过前面的普法(上),我相信童鞋们对HWC和drm_hwcomposer已经有了一定的认知了。谷歌出品,必须精品。我们前面的篇章见分析到啥来了,对了分析到了HwcDisplay::in…...
【评价类模型】熵权法
1.客观赋权法: 熵权法是一种客观求权重的方法,所有客观求权重的模型中都要有以下几步: 1.正向化处理: 极小型指标:取值越小越好的指标,例如错误率、缺陷率等。 中间项指标:取值在某个范围内较…...
PG 窗口函数
一,简介 窗口函数也叫分析函数,也叫OLAP函数,通过partition by分组,这里的窗口表示范围,,可以不指定PARATITION BY,会将这个表当成一个大窗口。 二,应用场景 (1)用于分…...
冯喜运:5.31晚间黄金原油行情分析及尾盘操作策略
【黄金消息面分析】:周五(5月31日),最新发布的数据显示,美国4月核心PCE物价指数月率录得0.2%,低于预期(0.3%),经济学家认为,核心指数比整体指数更能反映通胀。除此之外,美…...
Vue 框选区域放大(纯JavaScript实现)
需求:长按鼠标左键框选区域,松开后放大该区域,继续框选继续放大,反向框选恢复原始状态 实现思路:根据鼠标的落点,放大要显示的内容(内层盒子),然后利用水平偏移和垂直偏…...
C#加密与java 互通
文章目录 前言对方接口签名要求我方对接思路1.RSA 加密2.AES256加密 完整的加密帮助类 前言 提示:这里可以添加本文要记录的大概内容: 在我们对接其他公司接口的时候,时常会出现对方使用的开发语言和我方使用的开发语言不同的情况ÿ…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
