NeuralForecast 推理 - 数据集从文件dataset.pkl读
NeuralForecast 推理 - 数据集从文件dataset.pkl读
flyfish
from ray import tune
from neuralforecast.core import NeuralForecast
from neuralforecast.auto import AutoMLP
from neuralforecast.models import NBEATS, NHITS
import torch
import torch.nn as nn
import os
import pickle
import warnings
from copy import deepcopy
from itertools import chain
from typing import Any, Dict, List, Optional, Unionimport fsspec
import numpy as np
import pandas as pdfrom neuralforecast.models import (GRU,LSTM,RNN,TCN,DeepAR,DilatedRNN,MLP,NHITS,NBEATS,NBEATSx,DLinear,NLinear,TFT,VanillaTransformer,Informer,Autoformer,FEDformer,StemGNN,PatchTST,TimesNet,TimeLLM,TSMixer,
)
MODEL_FILENAME_DICT = {"autoformer": Autoformer,"autoautoformer": Autoformer,"deepar": DeepAR,"autodeepar": DeepAR,"dlinear": DLinear,"autodlinear": DLinear,"nlinear": NLinear,"autonlinear": NLinear,"dilatedrnn": DilatedRNN,"autodilatedrnn": DilatedRNN,"fedformer": FEDformer,"autofedformer": FEDformer,"gru": GRU,"autogru": GRU,"informer": Informer,"autoinformer": Informer,"lstm": LSTM,"autolstm": LSTM,"mlp": MLP,"automlp": MLP,"nbeats": NBEATS,"autonbeats": NBEATS,"nbeatsx": NBEATSx,"autonbeatsx": NBEATSx,"nhits": NHITS,"autonhits": NHITS,"patchtst": PatchTST,"autopatchtst": PatchTST,"rnn": RNN,"autornn": RNN,"stemgnn": StemGNN,"autostemgnn": StemGNN,"tcn": TCN,"autotcn": TCN,"tft": TFT,"autotft": TFT,"timesnet": TimesNet,"autotimesnet": TimesNet,"vanillatransformer": VanillaTransformer,"autovanillatransformer": VanillaTransformer,"timellm": TimeLLM,"tsmixer": TSMixer,"autotsmixer": TSMixer,
}
#model_path1 = "checkpoints\\test_run\\automlp_0.ckpt"
model_path = "checkpoints\\test_run"dataset_path = "checkpoints\\test_run\\dataset.pkl"def load(path, verbose=False, **kwargs):# Standarize path without '/'if path[-1] == "/":path = path[:-1]fs, _, paths = fsspec.get_fs_token_paths(path)files = [f.split("/")[-1] for f in fs.ls(path) if fs.isfile(f)]# Load modelsmodels_ckpt = [f for f in files if f.endswith(".ckpt")]if len(models_ckpt) == 0:raise Exception("No model found in directory.")if verbose:print(10 * "-" + " Loading models " + 10 * "-")models = []try:with fsspec.open(f"{path}/alias_to_model.pkl", "rb") as f:alias_to_model = pickle.load(f)except FileNotFoundError:alias_to_model = {}for model in models_ckpt:model_name = model.split("_")[0]model_class_name = alias_to_model.get(model_name, model_name)models.append(MODEL_FILENAME_DICT[model_class_name].load_from_checkpoint(f"{path}/{model}", **kwargs))if verbose:print(f"Model {model_name} loaded.")return modelsmodels = load(model_path,verbose=True)
print(models[0])
model = models[0]
model.eval()# Load dataset
def load_dataset(path, verbose=True):try:with fsspec.open(f"{path}/dataset.pkl", "rb") as f:dataset = pickle.load(f)print(dataset)if verbose:print("Dataset loaded.")except FileNotFoundError:dataset = Noneif verbose:print("No dataset found in directory.")return datasetdata=pd.read_pickle(dataset_path)
print("data:",data)trimmed_dataset = load_dataset(model_path)
print(trimmed_dataset)#TimeSeriesDataset(n_data=96, n_groups=1)step_size =1
model_fcsts = model.predict(trimmed_dataset, step_size=step_size)
print(model_fcsts)
相关文章:
NeuralForecast 推理 - 数据集从文件dataset.pkl读
NeuralForecast 推理 - 数据集从文件dataset.pkl读 flyfish from ray import tune from neuralforecast.core import NeuralForecast from neuralforecast.auto import AutoMLP from neuralforecast.models import NBEATS, NHITS import torch import torch.nn as nn import …...
TS-类型转换(显式)
1.将其他类型转换为布尔类型 要将其他类型转换为布尔类型,只需要将待转换的值传入Boolean()函数 var msg: string "ok"; var msgToBollean: boolean Boolean(msg); //得到trueBoolean()函数会判断传入的值是空值还是非空值。 若表示非空值࿰…...
protobufjs 配置踩坑记录
本文主要是小程序使用PB协议,以下时博主遇到的问题以及解决办法。 1、安装protobufjs npm install --save protobufjs 注意:我之前也使用过 npm install -g protobufjs去安装,但是出现以下的问题,关键是我使用sudo 清除相关文件…...

freeswitch官方仓库
概述 在使用源代码编译安装freeswitch的过程中,我们经常需要一些依赖库,其中freeswitch官方的yum源仓库是最齐全最方便的。 但是,freeswitch仓库的配置和使用需要先在signalwire网站注册账号并获取PAT(personal access token&am…...

element ui el-calendar日历组件完整代码
el-calendar日历组件完整代码 1. 说在前面2. 日历整体代码3. 编辑与新增 1. 说在前面 最近一直忙于上班,没咋看博客,发现很多小伙伴都要日历组件的代码,于是今天抽空给大家整理一下,为爱发电!日历组件的原文在这里&am…...

初识java——javaSE(8)异常
文章目录 一 异常的概念与体系结构1.1 什么是异常?1.2 异常的体系结构!1.3 编译时异常与运行时异常与Error编译时异常:异常声明:throws关键字 运行时异常:什么是Error? 二 处理异常2.1 异常的抛出:throw(注…...
C语言面试题11至20题
探索编程面试题:深度解析11至20题 在编程面试中,经常会遇到一些需要深入理解计算机科学基础和编程原理的问题。以下是对一些常见面试题的详细解答,涵盖递归、循环控制、内存管理等关键概念。 11. 递归函数定义没有问题,递归深层…...

视频汇聚EasyCVR综合安防平台对接GA/T1400公安视图库及应用方案
随着科技的不断进步,视频监控系统在公共安全领域发挥着越来越重要的作用。GA/T1400公安视图库作为公安视频图像信息应用系统的标准,为视频监控系统的对接提供了统一的规范和技术要求。 GA/T1400标准的应用范围广泛,涵盖了公安系统的视频图像信…...
在Github找自己想要的的项目
点击进入github 1.首先进入到github的首页;搜索框搜(先关键字搜索)in:name 你的找的项目 比如: in:name Sping Boot2.进一步检索(点赞数高的) in:name Sping Boot star:>1000 3.如何要找最新的&…...

第16篇:JTAG UART IP应用<三>
Q:如何通过HAL API函数库访问JTAG UART? A:Quartus硬件工程以及Platform Designer系统也和第一个Nios II工程--Hello_World的Quartus硬件工程一样。 Nios II软件工程对应的C程序调用HAL API函数,如open用于打开和创建文件&#…...

Python——Selenium快速上手+方法(一站式解决问题)
目录 前言 一、Selenium是什么 二、Python安装Selenium 1、安装Selenium第三方库 2、下载浏览器驱动 3、使用Python来打开浏览器 三、Selenium的初始化 四、Selenium获取网页元素 4.1、获取元素的实用方法 1、模糊匹配获取元素 & 联合多个样式 2、使用拉姆达表达式 3、加上…...

2024最新群智能优化算法:大甘蔗鼠算法(Greater Cane Rat Algorithm,GCRA)求解23个函数,提供MATLAB代码
一、大甘蔗鼠算法 大甘蔗鼠算法(Greater Cane Rat Algorithm,GCRA)由Jeffrey O. Agushaka等人于2024年提出,该算法模拟大甘蔗鼠的智能觅食行为。 参考文献 [1]Agushaka J O, Ezugwu A E, Saha A K, et al. Greater Cane Rat Alg…...

苍穹外卖数据可视化
文章目录 1、用户统计2、订单统计3、销量排名Top10 1、用户统计 所谓用户统计,实际上统计的是用户的数量。通过折线图来展示,上面这根蓝色线代表的是用户总量,下边这根绿色线代表的是新增用户数量,是具体到每一天。所以说用户统计…...
AWS需要实名吗?
AWS作为全球领先的云计算服务提供商,对于实名认证有着严格的要求。实名认证是指用户在使用AWS服务时需要提供真实有效的个人身份信息,以便AWS能够对用户的身份进行验证和管理。对于AWS而言,实名认证是确保用户安全和服务质量的重要环节&#…...

Android下HWC以及drm_hwcomposer普法(下)
Android下HWC以及drm_hwcomposer普法(下) 引言 不容易啊,写到这里。经过前面的普法(上),我相信童鞋们对HWC和drm_hwcomposer已经有了一定的认知了。谷歌出品,必须精品。我们前面的篇章见分析到啥来了,对了分析到了HwcDisplay::in…...

【评价类模型】熵权法
1.客观赋权法: 熵权法是一种客观求权重的方法,所有客观求权重的模型中都要有以下几步: 1.正向化处理: 极小型指标:取值越小越好的指标,例如错误率、缺陷率等。 中间项指标:取值在某个范围内较…...

PG 窗口函数
一,简介 窗口函数也叫分析函数,也叫OLAP函数,通过partition by分组,这里的窗口表示范围,,可以不指定PARATITION BY,会将这个表当成一个大窗口。 二,应用场景 (1)用于分…...

冯喜运:5.31晚间黄金原油行情分析及尾盘操作策略
【黄金消息面分析】:周五(5月31日),最新发布的数据显示,美国4月核心PCE物价指数月率录得0.2%,低于预期(0.3%),经济学家认为,核心指数比整体指数更能反映通胀。除此之外,美…...

Vue 框选区域放大(纯JavaScript实现)
需求:长按鼠标左键框选区域,松开后放大该区域,继续框选继续放大,反向框选恢复原始状态 实现思路:根据鼠标的落点,放大要显示的内容(内层盒子),然后利用水平偏移和垂直偏…...
C#加密与java 互通
文章目录 前言对方接口签名要求我方对接思路1.RSA 加密2.AES256加密 完整的加密帮助类 前言 提示:这里可以添加本文要记录的大概内容: 在我们对接其他公司接口的时候,时常会出现对方使用的开发语言和我方使用的开发语言不同的情况ÿ…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...