当前位置: 首页 > news >正文

卷积网络迁移学习:实现思想与TensorFlow实践

摘要:迁移学习是一种利用已有知识来改善新任务学习性能的方法。
在深度学习中,迁移学习通过迁移卷积网络(CNN)的预训练权重,实现了在新领域或任务上的高效学习。
下面我将详细介绍迁移学习的概念、实现思想,并在TensorFlow框架下实现一个迁移学习案例。
预期收获:更好的理解迁移学习的关键概念和实现方法,并在实际项目中应用迁移学习来提高模型性能
在这里插入图片描述

1. 迁移学习简介

迁移学习是一种跨领域或跨任务的学习方法,它旨在通过利用已有知识来改善新任务的学习性能。在深度学习中,迁移学习通常指的是将在一个大规模图像识别任务上预训练的卷积网络(CNN)权重,迁移到一个新的任务上,如图像分割、人脸识别等。这种方法的优势在于可以通过预训练的网络权重来提取和表达图像的特征,从而加快新任务的训练过程。

2. 迁移学习的实现思想

迁移学习的实现思想主要包括两个步骤:预训练和微调。

  • 预训练(Pre-training):在一个大规模的图像识别任务上训练卷积网络,如ImageNet数据集。这个过程通常使用随机梯度下降(SGD)优化算法来调整网络的权重,直到网络能够在大规模数据集上获得较好的分类性能。预训练的模型中的权重将作为后续微调的起点。

  • 微调(Fine-tuning):在特定的任务上进行微调,即将预训练好的网络权重作为起点,针对新的任务调整网络的某些层或全部层的权重。微调过程中,通常只训练网络的最后几层,因为这些层与特定任务相关。

3. TensorFlow实现迁移学习

在TensorFlow中,可以使用tf.keras API来实现迁移学习。下面是一个简单的迁移学习实例,我们将使用预训练的CNN模型来对一个新的图像分类任务进行微调。

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam# 加载预训练的CNN模型,这里以VGG16为例
base_model = tf.keras.applications.VGG16(weights='imagenet', include_top=False)# 设置预训练模型的权重不可训练
for layer in base_model.layers:layer.trainable = False# 在预训练模型的基础上添加新的全局平均池化层和分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)# 构建迁移学习模型
model = Model(inputs=base_model.input, outputs=predictions)# 编译模型
model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])# 设置数据生成器,包括数据增强
train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)test_datagen = ImageDataGenerator(rescale=1./255)# 加载训练和验证数据
train_generator = train_datagen.flow_from_directory(train_data_dir,target_size=(img_width, img_height),batch_size=batch_size,class_mode='categorical')validation_generator = test_datagen.flow_from_directory(validation_data_dir,target_size=(img_width, img_height),batch_size=batch_size,class_mode='categorical')# 进行迁移学习微调
model.fit(train_generator,steps_per_epoch=train_samples // batch_size,epochs=epochs,validation_data=validation_generator,validation_steps=validation_samples // batch_size)# 保存迁移学习模型
model.save('transfer_learning_model.h5')

在这里插入图片描述

4. 迁移学习实现的注意事项

在进行迁移学习时,需要注意以下几点:

  • 选择适当的预训练模型和层级:预训练模型应该与你的新任务相对应。一般来说,深度和复杂性更高的模型在更抽象和通用的特征上学得更好,但在特定任务上的微调可能会更困难。

  • 适当调整学习率:在微调时,应根据需要选择合适的学习率。如果要微调更高层级的网络层,建议使用较小的学习率,以避免过度调整预训练权重。

  • 合理的数据准备和数据增强:确保为任务准备合适的数据集,并根据需要使用数据增强来扩充数据集,从而增加模型的泛化能力。

总结

迁移学习通过利用已有知识来改善新任务学习的性能,是深度学习中非常有用的方法。
前面我介绍了迁移学习的概念、实现思想,并提供了一个基于TensorFlow的迁移学习实践案例。
希望这篇文章能够帮助到你

在这里插入图片描述

相关文章:

卷积网络迁移学习:实现思想与TensorFlow实践

摘要:迁移学习是一种利用已有知识来改善新任务学习性能的方法。 在深度学习中,迁移学习通过迁移卷积网络(CNN)的预训练权重,实现了在新领域或任务上的高效学习。 下面我将详细介绍迁移学习的概念、实现思想&#xff0c…...

Ansible04-Ansible Vars变量详解

目录 写在前面6 Ansible Vars 变量6.1 playbook中的变量6.1.1 playbook中定义变量的格式6.1.2 举例6.1.3 小tip 6.2 共有变量6.2.1 变量文件6.2.1.1 变量文件编写6.2.1.2 playbook编写6.2.1.3 运行测试 6.2.2 根据主机组使用变量6.2.2.1 groups_vars编写6.2.2.2 playbook编写6.…...

Flutter 中的 SliverCrossAxisGroup 小部件:全面指南

Flutter 中的 SliverCrossAxisGroup 小部件:全面指南 Flutter 是一个功能丰富的 UI 开发框架,它允许开发者使用 Dart 语言来构建高性能、美观的移动、Web 和桌面应用。在 Flutter 的丰富组件库中,SliverCrossAxisGroup 是一个较少被使用的组…...

开源还是闭源这是一个问题

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

数据结构与算法笔记:基础篇 - 栈:如何实现浏览器的前进和后退功能?

概述 浏览器的前进、后退功能,你肯定很熟悉吧? 当依次访问完一串页面 a-b-c 之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面 b 和 a。当后退到页面 a,点击前进按钮,就可以重新查看页面 b 和 c。但…...

【AIGC】大型语言模型在人工智能规划领域模型生成中的探索

大型语言模型在人工智能规划领域模型生成中的新应用 一、引言二、LLM在规划领域模型生成中的潜力三、实证分析:LLM在规划领域模型生成中的表现四、代码实例:LLM在规划领域模型生成中的应用五、结论与展望 一、引言 随着人工智能技术的迅猛发展&#xff0…...

从零开始学习Slam-旋转矩阵旋转向量四元组(二)

本文参考:计算机视觉life 仅作笔记用 书接上回,上回不清不楚的介绍了旋转矩阵&旋转向量和四元组 现在回顾一下重点: 本着绕谁谁不变的变则 假设绕z轴旋转θ,旋转矩阵为: 再回顾一下旋转向量的表示以及这个基本记不…...

基于Spring Security添加流控

基于Spring Security添加流控的过程&#xff1a; 步骤1: 添加依赖 确保项目中包含了Spring Security和Sentinel-Core的相关依赖。在Maven项目中&#xff0c;可以在pom.xml中添加如下依赖&#xff1a; <!-- Spring Security --> <dependency><groupId>org.…...

Python | Leetcode Python题解之第119题杨辉三角II

题目&#xff1a; 题解&#xff1a; class Solution:def getRow(self, rowIndex: int) -> List[int]:row [1, 1]if rowIndex < 1:return row[:rowIndex 1]elif rowIndex > 2:for i in range(rowIndex - 1):row [row[j] row[j 1] for j in range(i 1)]row.inser…...

物联网应用系统与网关

一. 传感器底板相关设计 1. 传感器设计 立创EDA传感器设计举例。 2. 传感器实物图 3. 传感器测试举例 测试激光测距传感器 二. 网关相关设计 1. LORA&#xff0c;NBIOT等设计 2. LORA&#xff0c;NBIOT等实物图 3. ZigBee测试 ZigBee测试 4. NBIoT测试 NBIoT自制模块的测试…...

系统稳定性概览

系统稳定性 系统稳定性&#xff0c;包括&#xff1a;监控、 告警、性能优化、慢sql、耗时接口等。 系统的稳定性的治理&#xff0c;可以围绕这几方面展开。 监控 Prometheus 监控并收集数据。监控 qps&#xff0c;tps&#xff0c; rt , cpu使用率&#xff0c;cpu load&#…...

Redis-Cluster模式基操篇

一、场景 1、搞一套6个主节点的Cluster集群 2、模拟数据正常读写 3、模拟单点故障 4、在不停服务的情况下将集群架构改为3主3从 二、环境规划 6台独立的服务器&#xff0c;端口18001~18006 192.169.14.121 192.169.14.122 192.169.14.123 192.169.14.124 192.169.14.125 192…...

Golang | Leetcode Golang题解之第113题路径总和II

题目&#xff1a; 题解&#xff1a; type pair struct {node *TreeNodeleft int }func pathSum(root *TreeNode, targetSum int) (ans [][]int) {if root nil {return}parent : map[*TreeNode]*TreeNode{}getPath : func(node *TreeNode) (path []int) {for ; node ! nil; no…...

云计算与 openstack

文章目录 一、 虚拟化二、云计算2.1 IT系统架构的发展2.2 云计算2.3 云计算的服务类型 三、Openstack3.1 OpenStack核心组件 一、 虚拟化 虚拟化使得在一台物理的服务器上可以跑多台虚拟机&#xff0c;虚拟机共享物理机的 CPU、内存、IO 硬件资源&#xff0c;但逻辑上虚拟机之…...

golang语言的gofly快速开发框架如何设置多样的主题说明

本节教大家如何用gofly快速开发框架后台内置设置参数&#xff0c;配置出合适项目的布局及样式、主题色&#xff0c;让你您的项目在交互上加分&#xff0c;也是能帮你在交付项目时更容易得到客户认可&#xff0c;你的软件使用客户他们一般都是不都技术的&#xff0c;所以当他们拿…...

lynis安全漏洞扫描工具

Lynis是一款Unix系统的安全审计以及加固工具&#xff0c;能够进行深层次的安全扫描&#xff0c;其目的是检测潜在的时间并对未来的系统加固提供建议。这款软件会扫描一般系统信息&#xff0c;脆弱软件包以及潜在的错误配置。 安装 方式1 git下载使用git clone https://github…...

C++ 多重继承的内存布局和指针偏移

在 C 程序里&#xff0c;在有多重继承的类里面。指向派生类对象的基类指针&#xff0c;其实是指向了派生类对象里面&#xff0c;该基类对象的起始位置&#xff0c;该位置相对于派生类对象可能有偏移。偏移的大小&#xff0c;等于派生类的继承顺序表里面&#xff0c;排在该类前面…...

centos时间不对

检查当前时区是否正确 timedatectl status如果时区不正确&#xff0c;使用以下命令设置正确的时区&#xff08;将Asia/Shanghai替换为您所在的时区&#xff09;&#xff1a; timedatectl set-timezone Asia/Shanghai如果时区正确但时间不准确&#xff0c;使用以下命令同步网络…...

通过Redis实现防止接口重复提交功能

本功能是在切面执行链基础上实现的功能&#xff0c;如果不知道切面执行链的同学&#xff0c;请看一下我之前专门介绍切面执行链的文章。 在SpringBoot项目中实现切面执行链功能-CSDN博客 1.定义防重复提交handler /*** 重复提交handler**/ AspectHandlerOrder public class …...

如何构建最小堆?

方式1&#xff1a;上浮调整 /*** 上浮调整(小的上浮)*/ public static void smallUp1(int[] arr, int child) {int parent (child - 1) / 2;while (0 < child && arr[child] < arr[parent]) { // 0 < child说明这个节点还是叶子arr[child] arr[child] ^ ar…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...