当前位置: 首页 > news >正文

自动微分技术在 AI for science 中的应用

本文简记我在学习自动微分相关技术时遇到的知识点。

反向传播和自动微分

以 NN 为代表的深度学习技术展现出了强大的参数拟合能力,人们通过堆叠固定的 layer 就能轻松设计出满足要求的参数拟合器。

例如,大部分图神经网络均基于消息传递的架构。在推理阶段,用户只需给出分子坐标及原子类型,就能得到整个分子的性质。因此其整体架构与下图类似:

img

在模型设计阶段,我们用 pytorch 即可满足大部分需求,以 schnetpack 为例:

  1. 我们 from torch import nn 导入了设计 nn 常用的模块。在初始化模型时,我们直接继承了 pytorch 内置的模块 class AtomisticModel(nn.Module)
  2. 有一些函数是重新编写的,例如激活函数 shiftedsoftplus

我们可以看到,模型的整体框架依然是基于 pytorch 的,但针对具体的应用场景,我们做了很多优化。

一方面,使用 pytorch 可以帮助我们快速建立类似上图的模型网络,pytorch 会自动执行梯度的反向传播。从 loss function 开始,逐层递进直至输入层。pytorch 还会帮助我们完成整个网络的参数迭代,学习率的迭代等等。。。

另一方面,针对一些特殊的需求,用户需要自行 DIY,完成需要的功能。

这其中隐含着,用户在程序设计时灵活性与便利性之间的折中。

注意到,刚才提到了梯度的反向传播,事实上,这种常用算法只是自动微分算法中的一种。引用 Gemini 的一个例子:

  • 反向传播好像是计算小山丘斜率(仅限于 NN)的一种算法;
  • 自动微分则可以计算除了小山丘以外的所有物品的斜率(涵盖所有链式求导法则);

写到这里,自动微分技术的应用场景就很好理解了:

  • 有一些应用场景不适合无脑堆叠 NN,但仍然需要优化参数,此时 from torch import nn 就不管用了,套用固定模版已经很难带来便利性;
  • 由于整个网络的框架已经不再是上图所示,规整的一层层的 NN 结构,反向传播算法就不再适用于参数优化了,需要更加灵活的自动微分方法;

pytorch 与 jax

我们可以将参数优化的相关框架归结为两个应用场景:

  1. 用户调用标准函数,搭建层级式标准 NN;
  2. 用户自行设计函数,搭建非标准拟合器(仍需优化参数)

针对第一个场景,我们可以使用 pytorch,因为 pytorch 对常用网络架构封装很好。

针对第二个场景,使用 pytorch 会更加繁琐,此时可以切换为 jax ,因为 jax 对用户自定义函数形式更加友好,其内置自动微分算法使用起来更加方便。

除了应用场景的区别外,二者还有以下几个区别:

  1. pytorch 支持静态/动态计算图,而 jax 仅支持静态图
  2. pytorch debug 起来更加方便
  3. jax 针对 GPU, TPU 等硬件优化更多,结合其 JIT(Just In Time) 特性,jax 模型一般比 pytorch 模型快得多
  4. 二者间的相互转换难度不大(参见:一文打通PyTorch与JAX)

AI for Science 领域内三个应用案例

DMFF

余旷老师在他的系列博文里系统阐释了为什么 DMFF 要基于 jax 开发(参见:漫谈分子力场、自动微分与DMFF项目:4. DMFF和JAX概述)

总结一下,使用 jax 的原因有以下几点:

  1. 传统分子力场的形式不适合用 NN 建模
    • 为方便大家理解,我举一个中学物理的例子。苹果从树上落下,遵从自由落体运动,位移随时间变化的规律:h=1/2 * g * t^2, 其中 g 作为引力常数就是需要通过多次落体实验测定的量。我们当然可以用多层 NN 拟合这一参数,但假如我们已经知道了这样一个表达式,此时直接使用该表达式即可。
    • 传统分子力场就是高度参数化的方程,发展至今已经有了一套函数形式,无需从头用 NN 的形式拟合
  2. 反向传播算法只适用与 NN,不适应上述高度参数化的方程,但优化力场参数仍需要自动微分技术
    • 计算原子受力,整个盒子的维里均需要微分技术,使用 jax 编程会更加方便
  3. jax 性能更高,速度快
  4. jax 可拓展性好
    • 余旷老师在 漫谈分子力场、自动微分与DMFF项目:5. DMFF中势函数的生成和拓展 举了一个例子,使用 DMFF 能有效复用前人开发势函数模块,无需从头造轮子

E3x

在 Oliver T. Unke 近期的一篇论文中,作者介绍了名为 E3x 的神经网络框架,对标 pytorch_geometric。

其目的在于,方便用户设计具有 E3 等变性的图神经网络。

使用 E3x 能将所有 AI for Science 领域的 GNN 从 pytorch 迁移至 jax 框架,再结合 jax-MD,获得大幅性能提升。

作者在另一篇论文中透露了这种改造的效果:

请添加图片描述

在稳定性和受力误差不变的情况下,NequIP 提速 28 倍,SchNet 提速 15 倍。那么,E3x 做了哪些关键改动呢?

  1. e3x 对不可约张量进行了压缩,降低了其稀疏性

    请添加图片描述

  2. e3x 设计了开箱即用的激活函数,全连接层、张量层等,这些网络结构都是 E3 等变的

DLDFPT

神经网络与密度泛函围绕理论的结合,论文地址

这是李贺大神今年上半年的一篇 PRL,说实话,我也没看懂。我只是理解到:

  • 传统的 DFPT 理论在计算某一个矩阵的时候遇到了计算瓶颈;
  • 使用自动微分技术能绕开这一瓶颈

相关文章:

自动微分技术在 AI for science 中的应用

本文简记我在学习自动微分相关技术时遇到的知识点。 反向传播和自动微分 以 NN 为代表的深度学习技术展现出了强大的参数拟合能力,人们通过堆叠固定的 layer 就能轻松设计出满足要求的参数拟合器。 例如,大部分图神经网络均基于消息传递的架构。在推理…...

ASM OMF single-file creation form 重命名

OMF下不能自动命名,需要重新命名的话:1 1. spfile 可以 create pfile from spfile 后再create spfile from pfile 2 redo? 3 datafile? Here are some details of the copy problem: a) You are not allowed to set the numbe…...

VGGNet

VGGNet CNN卷积网络的发展史 1. LetNet5(1998) 2. AlexNet(2012) 3. ZFNet(2013) 4. VGGNet(2014) 5. GoogLeNet(2014) 6. ResNet(2015) 7. DenseNet(2017) 8. EfficientNet(2019) 9. Vision Transformers(2020) 10. 自适应卷积网络(2021) 上面列出了发展到现在CNN的一些经典…...

SpringMVC:转发和重定向

1. 请求转发和重定向简介 参考该链接第9点 2. forward 返回下一个资源路径,请求转发固定格式:return "forward:资源路径"如 return "forward:/b" 此时为一次请求返回逻辑视图名称 返回逻辑视图不指定方式时都会默认使用请求转发in…...

961操作系统知识总结

部分图片可能无法显示,参考这里:https://zhuanlan.zhihu.com/p/701247894 961操作系统知识总结 一 操作系统概述 1. 操作系统的基本概念 重要操作系统类型:批处理操作系统(批量处理作业,单道批处理/多道批处理系统,用…...

电脑死机问题排查

情况描述:2024年6月2日下午16:04分电脑突然花屏死机,此情况之前遇到过三次,认为是腾讯会议录屏和系统自带录屏软件冲突导致。 报错信息:应用程序-特定 权限设置并未向在应用程序容器 不可用 SID (不可用)中运行的地址…...

百度地图1

地图的基本操作 百度地图3.0文档 百度地图3.0实例中心 设置地图 centerAndZoom(center: Point, zoom: Number)设初始化地图,center类型为Point时,zoom必须赋值,范围3-19级, // 百度地图API功能var map new BMap.Map("map"); //…...

Ubuntu 24.04 LTS 安装Docker

1 更新软件包索引: sudo apt-get update 2 安装必要的软件包,以允许apt通过HTTPS使用仓库: sudo apt-get install apt-transport-https ca-certificates curl software-properties-common 3 添加Docker的官方GPG密钥: curl -fs…...

【架构设计】Java如何利用AOP实现幂等操作,防止客户端重复操作

1实现方案详解 在Java中,使用AOP(面向切面编程)来实现幂等操作是一个常见的做法,特别是当你想在不修改业务代码的情况下添加一些横切关注点(如日志、事务管理、安全性等)时。幂等操作指的是无论执行多少次,结果都是相同的操作。 为了利用AOP实现幂等操作以防止客户端重…...

笔记:美团的测试

0.先启动appium 1.编写代码 如下: from appium import webdriver from appium.webdriver.extensions.android.nativekey import AndroidKeydesired_caps {platformName: Android,platformVersion: 10,deviceName: :VOG_AL10,appPackage: com.sankuai.meituan,ap…...

【30天精通Prometheus:一站式监控实战指南】第15天:ipmi_exporter从入门到实战:安装、配置详解与生产环境搭建指南,超详细

亲爱的读者们👋   欢迎加入【30天精通Prometheus】专栏!📚 在这里,我们将探索Prometheus的强大功能,并将其应用于实际监控中。这个专栏都将为你提供宝贵的实战经验。🚀   Prometheus是云原生和DevOps的…...

STM32F103借助ESP8266连接网络

ESP8266配置 STM32F103本身是不具备联网功能的,所以我们必须借助其他单片机来进行联网,然后让STM32与联网单片机通信,就可以实现STM32联网了。 本文借助的是ESP8266模块,其通过UART协议与STM32通信(http://t.csdnimg.c…...

Feature Manipulation for DDPM based Change Detection

基于去噪扩散模型的特征操作变化检测 文章提出了一种基于去噪扩散概率模型(DDPM)的特征操作变化检测方法。变化检测是计算机视觉中的经典任务,涉及分析不同时间捕获的图像对,以识别场景中的重要变化。现有基于扩散模型的方法主要…...

第十三届蓝桥杯国赛大学B组填空题(c++)

A.2022 动态规划 AC; #include<iostream> #define int long long using namespace std; int dp[2050][15]; //dp[i][j]:把数字i分解为j个不同的数的方法数 signed main(){dp[0][0]1;for(int i1;i<2022;i){for(int j1;j<10;j){//一种是已经分成j个数,这时只需每一个…...

conda源不能用了的问题

conda旧没用了&#xff0c;不知道什么原因&#xff0c;安装源出问题&#xff0c;报如下错&#xff1a; Loading channels: failedUnavailableInvalidChannel: HTTP 404 NOT FOUND for channel anaconda/pkgs/main <https://mirrors.aliyun.com/anaconda/pkgs/main>The c…...

【C#】自定义List排序规则的两种方式

目录 1.系统排序原理 2.方式一&#xff1a;调用接口并重写 3.方式二&#xff1a;传排序规则函数做参数 1.系统排序原理 当我们对一个List<int>类型的数组如list1排序时&#xff0c;一个轻松的list1.sort();帮我们解决了问题 但是在实际应用过程中&#xff0c;往往我们…...

ANAH数据集- 大模型幻觉细粒度评估工具

大型语言模型&#xff08;LLMs&#xff09;在各种自然语言处理任务中取得了显著的性能提升。然而&#xff0c;它们在回答用户问题时仍面临一个令人担忧的问题&#xff0c;即幻觉&#xff0c;它们会产生听起来合理但不符合事实或无意义的信息&#xff0c;尤其是当问题需要大量知…...

AI前沿技术探索:智能化浪潮下的创新与应用

一、引言 随着科技的不断进步&#xff0c;人工智能&#xff08;AI&#xff09;已成为推动社会发展的重要力量。从自动驾驶汽车到智能医疗诊断&#xff0c;从智能家居到虚拟助手&#xff0c;AI技术正逐渐渗透到我们生活的方方面面。本文旨在探讨AI的前沿技术、创新应用以及未来…...

JVM类加载过程

在Java虚拟机规范中&#xff0c;把描述类的数据从class文件加载到内存&#xff0c;并对数据进行校验、转换解析和初始化&#xff0c;最终形成可以被虚拟机直接使用的java.lang.Class对象&#xff0c;这个过程被称作类加载过程。一个类在整个虚拟机周期内会经历如下图的阶段&…...

如何安装ansible

ansible安装 1、 准备环境----关闭防护墙和selinux 一般用ansible不会少于10台以上 环境: 主机&#xff1a;4台 一个控制节点 3个被控制节点 解析&#xff1a;本地互相解析(所有机器) # vim /etc/hosts 192.168.1.10 ansible-web1 192.168.1.11 ansible-web2 192.168.1.12…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...