当前位置: 首页 > news >正文

集成算法:Bagging模型、AdaBoost模型和Stacking模型

概述

目的:让机器学习效果更好,单个不行,集成多个
集成算法
Bagging:训练多个分类器取平均
f ( x ) = 1 / M ∑ m = 1 M f m ( x ) f(x)=1/M\sum^M_{m=1}{f_m(x)} f(x)=1/Mm=1Mfm(x)
Boosting:从弱学习器开始加强,通过加权来进行训练
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm1(x)+argminhi=1nL(yi,Fm1(xi)+h(xi))
(加入一棵树,新的树更关注之前错误的例子)
Stacking:聚合多个分类或回归模型(可以分阶段来做)

Bagging模型(随机森林)

全称: bootstrap aggregation(说白了就是并行训练一堆分类器)
最典型的代表就是随机森林,现在Bagging模型基本上也是随机森林。
image.png
随机:数据采样随机,每棵树只用部分数据;数据有多个特征(属性)组成,每棵树随机选择部分特征。随机是为了使得每个分类器拥有明显差异性。
森林:很多个决策树并行放在一起
如何对所有树选择最终结果?分类的话可以采取少数服从多数,回归的话可以采用取平均值。

构造树模型

image.png
由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。
树模型:
image.png

随机性

之所以要进行随机,是要保证泛化能力,如果树都一样,那就没意义了!
如下图所示,当每个弱分类器分类错误的样本各不相同时,则能得到一个效果优异的集成模型。
image.png

随机森林优势

它能够处理很高维度的数据,即数据拥有很多特征(属性),并且不用做特征选择(集成算法自动选择了重要的特征)。
在训练完后,它能够给出哪些feature比较重要。
image.png
可以进行可视化展示,便于分析。
容易做成并行化方法,速度比较快。
解答为什么随机森林能够给出哪些feature比较重要。
假如有四个分类器 A , B , C , D A,B,C,D A,B,C,D,他们对应关注(随机选择到)的属性为 a , b , c , d a,b,c,d a,b,c,d
A , B , C , D A,B,C,D A,B,C,D的结果并且按少服从多数(也可以去平均等决策策略)得到错误了 e r r o r 1 error_1 error1
之后我们给 B B B制作假数据,把之前真的数据结果打乱或者换成不合理的值,得到 B ′ B' B,之后
A , B ′ , C , D A,B',C,D A,B,C,D的结果并且按少服从多数(也可以去平均等决策策略)得到错误了 e r r o r 2 error_2 error2
如果 e r r o r 2 ≈ e r r o r 1 error_2\approx error_1 error2error1,则说明属性 B B B并不重要。
如果 e r r o r 2 ≫ e r r o r 1 error_2 \gg error_1 error2error1,则说明属性 B B B非常重要,对结果造成了巨大影响。

关于树的个数

image.png
理论上越多的树效果会越好,但实际上基本超过一定数量就差不多上下浮动了。

Boosting模型(提升算法模型)

概述:
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm1(x)+argminhi=1nL(yi,Fm1(xi)+h(xi))
假如有三个分类器 A , B , C A,B,C A,B,C,这个时候正如公式所示, A , B , C A,B,C A,B,C有种串联的感觉。
假如有1000条数据, A A A仅分类正确900条,之后 B B B就关注错误的100条数据,仅那100条作为数据预测(这个做法有点极端,也可以拿小部分900条里面的数据),之后 B B B正确预测出50条,那么 C C C就那拿剩下的50条错误的数据用来给 C C C预测。
典型代表: AdaBoost, Xgboost

AdaBoost模型

Adaboost会根据前一次的分类效果调整数据权重,如果某一个数据在这次分错了,那么在下一次我就会给它更大的权重
最终的结果:每个分类器根据自身的准确性来确定各自的权重,再合并结果。
Adaboost工作流程
每一次切一刀,最终合在一起,弱分类器效果就更好了
image.png

Stacking模型

堆叠:很暴力,拿来一堆分类器直接上
可以堆叠各种各样的分类器( KNN,SVM,RF等等)
为了刷结果,不择手段!
分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练
image.png
堆叠在一起确实能使得准确率提升,但是速度是个问题。

相关文章:

集成算法:Bagging模型、AdaBoost模型和Stacking模型

概述 目的:让机器学习效果更好,单个不行,集成多个 集成算法 Bagging:训练多个分类器取平均 f ( x ) 1 / M ∑ m 1 M f m ( x ) f(x)1/M\sum^M_{m1}{f_m(x)} f(x)1/M∑m1M​fm​(x) Boosting:从弱学习器开始加强&am…...

DW怎么Python:探索Dreamweaver与Python的交织世界

DW怎么Python:探索Dreamweaver与Python的交织世界 在数字世界的广袤天地中,Dreamweaver(简称DW)与Python这两大工具各自闪耀着独特的光芒。DW以其强大的网页设计和开发能力著称,而Python则以其简洁、易读和强大的编程…...

算法(十三)回溯算法---N皇后问题

文章目录 算法概念经典例子 - N皇后问题什么是N皇后问题?实现思路 算法概念 回溯算法是类似枚举的深度优先搜索尝试过程,主要是再搜索尝试中寻找问题的解,当发生不满足求解条件时,就会”回溯“返回(也就是递归返回&am…...

论文阅读:Correcting Motion Distortion for LIDAR HD-Map Localization

目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:http://arxiv.org/pdf/2308.13694.pdf 代码地址:https://github.com/mcdermatt/VICET 概要 激光雷达的畸变矫正是一个非常重要的工作。由于扫描式激光雷达传感器需要有限的时间来创建…...

Git操作笔记

学git已经好多次了。但是还是会忘记很多的东西,一些常用的操作命令和遇到的bug以后在这边记录汇总下 一.github图片展示 图片挂载,我是创建了一个库专门存图片,然后在github的md中用专用命令展示图片,这样你的md就不会全是文字那…...

使用Python进行数据分析的基本步骤

简介: 在当今的数据驱动世界中,数据分析已成为各行各业不可或缺的一部分。Python作为一种强大的编程语言,提供了丰富的库和工具,使得数据分析变得简单易行。本文将带你了解使用Python进行数据分析的基本步骤。 一、数据获取 从外…...

NGINX优化

NGINX优化分为两个方面: 一. nginx应用配置文件的优化: 1.nginx的性能优化: 全局块: 设置工作进程数: work_processes #设置工作进程数 设置工作进程连接数:work_rilmit_nofile #设置每个worker进程最大可…...

【LeetCode刷题】二分查找:山脉数组的峰顶索引、寻找峰值

【LeetCode刷题】Day 13 题目1:852.山脉数组的峰顶索引思路分析:思路1:暴力枚举O(N)思路2:二分查找O(logN) 题目2:162.寻找峰值思路分析:思路1:二分查找O(logN) 题目1:852.山脉数组的…...

《Python学习》-- 实操篇一

一、文件操作 1. 1 读取文本文件 # 文件操作模式 # r (默认) - 只读模式。文件必须存在,否则会抛出FileNotFoundError。在这种模式下,你只能读取文件内容,不能写入或追加。 # w - 写入模式。如果文件存在,内容会被清空&#xff…...

C# 集合(二) —— List/Queue类

总目录 C# 语法总目录 集合二 List/Queue 1. List2. Queue 1. List List有ArrayList和LinkedList ArrayList 类似数组,查找快,插入删除慢(相对)LinkedList 类似双向链表,查找慢(相对),插入删除快 //ArrayList //ArrayList Arr…...

【TB作品】MSP430 G2553 单片机口袋板,读取单片机P1.4电压显示,ADC

功能 读取P1.4电压,显示到口袋板显示屏,电压越高亮灯越多。 部分程序 while (1){ADC10CTL0 | ENC ADC10SC; // Sampling and conversion startLPM0;adcvalue ADC10MEM; //原始数据 0到1023adtest (float) adcvalue / 1024.…...

知乎x-zse-96、x-zse-81

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章未…...

【Linux】Linux工具——yum,vim

1.Linux 软件包管理器——yum Linux安装软件: 源代码安装(不建议)rpm安装(类似Linux安装包,版本可能不兼容,不推荐,容易报错)yum安装(解决了安装源,安装版本&…...

ES 生命周期管理

一 .概念 ILM定义了四个生命周期阶段:Hot:正在积极地更新和查询索引。Warm:不再更新索引,但仍在查询。cold:不再更新索引,很少查询。信息仍然需要可搜索,但是如果这些查询速度较慢也可以。Dele…...

【JavaScript脚本宇宙】揭秘HTTP请求库:深入理解它们的特性与应用

深度揭秘:六大HTTP请求库的比较与应用 前言 在这篇文章中,我们将探讨六种主要的HTTP请求库。这些库为处理网络请求提供了不同的工具和功能,包括Axios、Fetch API、Request、SuperAgent、Got和Node-fetch。通过本文,你将对每个库…...

【强化学习】DPO(Direct Preference Optimization)算法学习笔记

【强化学习】DPO(Direct Preference Optimization)算法学习笔记 RLHF与DPO的关系KL散度Bradley-Terry模型DPO算法流程参考文献 RLHF与DPO的关系 DPO(Direct Preference Optimization)和RLHF(Reinforcement Learning f…...

vue3 todolist 简单例子

vue3 简单的TodList 地址: https://gitee.com/cheng_yong_xu/vue3-composition-api-todo-app-my 效果 step-1 初始化项项目 我们不采用vue cli 搭建项目 直接将上图文件夹,复制到vscode编辑器,清空App.vue的内容 安装包 # 安装包 npm…...

Linux项目编程必备武器!

本文目录 一、更换源服务器二、下载man开发手册(一般都自带,没有的话使用下面方法下载) 一、更换源服务器 我们使用apt-get等下载命令下载的软件都是从源服务器上获取的,有些软件包在某个服务器上存在,而另一个服务器不存在。所以我们可以添加…...

AndroidStudio编译很慢问题解决

如果gradle同步、编译下载很慢,可以换一下仓库阿里云镜像 repositories {maven { url https://maven.aliyun.com/repository/google } maven { url https://maven.aliyun.com/repository/jcenter } maven { url https://maven.aliyun.com/repository/public } goog…...

PHAR反序列化

PHAR PHAR(PHP Archive)文件是一种归档文件格式,phar文件本质上是一种压缩文件,会以序列化的形式存储用户自定义的meta-data。当受影响的文件操作函数调用phar文件时,会自动反序列化meta-data内的内容,这里就是我们反序…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

测试markdown--肇兴

day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

xmind转换为markdown

文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...