集成算法:Bagging模型、AdaBoost模型和Stacking模型
概述
目的:让机器学习效果更好,单个不行,集成多个
集成算法
Bagging:训练多个分类器取平均
f ( x ) = 1 / M ∑ m = 1 M f m ( x ) f(x)=1/M\sum^M_{m=1}{f_m(x)} f(x)=1/M∑m=1Mfm(x)
Boosting:从弱学习器开始加强,通过加权来进行训练
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm−1(x)+argminh∑i=1nL(yi,Fm−1(xi)+h(xi))
(加入一棵树,新的树更关注之前错误的例子)
Stacking:聚合多个分类或回归模型(可以分阶段来做)
Bagging模型(随机森林)
全称: bootstrap aggregation(说白了就是并行训练一堆分类器)
最典型的代表就是随机森林,现在Bagging模型基本上也是随机森林。
随机:数据采样随机,每棵树只用部分数据;数据有多个特征(属性)组成,每棵树随机选择部分特征。随机是为了使得每个分类器拥有明显差异性。
森林:很多个决策树并行放在一起
如何对所有树选择最终结果?分类的话可以采取少数服从多数,回归的话可以采用取平均值。
构造树模型
由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样。
树模型:
随机性
之所以要进行随机,是要保证泛化能力,如果树都一样,那就没意义了!
如下图所示,当每个弱分类器分类错误的样本各不相同时,则能得到一个效果优异的集成模型。
随机森林优势
它能够处理很高维度的数据,即数据拥有很多特征(属性),并且不用做特征选择(集成算法自动选择了重要的特征)。
在训练完后,它能够给出哪些feature比较重要。
可以进行可视化展示,便于分析。
容易做成并行化方法,速度比较快。
解答:为什么随机森林能够给出哪些feature比较重要。
假如有四个分类器 A , B , C , D A,B,C,D A,B,C,D,他们对应关注(随机选择到)的属性为 a , b , c , d a,b,c,d a,b,c,d
取 A , B , C , D A,B,C,D A,B,C,D的结果并且按少服从多数(也可以去平均等决策策略)得到错误了 e r r o r 1 error_1 error1
之后我们给 B B B制作假数据,把之前真的数据结果打乱或者换成不合理的值,得到 B ′ B' B′,之后
取 A , B ′ , C , D A,B',C,D A,B′,C,D的结果并且按少服从多数(也可以去平均等决策策略)得到错误了 e r r o r 2 error_2 error2
如果 e r r o r 2 ≈ e r r o r 1 error_2\approx error_1 error2≈error1,则说明属性 B B B并不重要。
如果 e r r o r 2 ≫ e r r o r 1 error_2 \gg error_1 error2≫error1,则说明属性 B B B非常重要,对结果造成了巨大影响。
关于树的个数
理论上越多的树效果会越好,但实际上基本超过一定数量就差不多上下浮动了。
Boosting模型(提升算法模型)
概述:
F m ( x ) = F m − 1 ( x ) + a r g m i n h ∑ i = 1 n L ( y i , F m − 1 ( x i ) + h ( x i ) ) F_m(x)=F_{m-1}(x)+argmin_h\sum^n_{i=1}L(y_i,F_{m-1}(x_i)+h(x_i)) Fm(x)=Fm−1(x)+argminh∑i=1nL(yi,Fm−1(xi)+h(xi))
假如有三个分类器 A , B , C A,B,C A,B,C,这个时候正如公式所示, A , B , C A,B,C A,B,C有种串联的感觉。
假如有1000条数据, A A A仅分类正确900条,之后 B B B就关注错误的100条数据,仅那100条作为数据预测(这个做法有点极端,也可以拿小部分900条里面的数据),之后 B B B正确预测出50条,那么 C C C就那拿剩下的50条错误的数据用来给 C C C预测。
典型代表: AdaBoost, Xgboost
AdaBoost模型
Adaboost会根据前一次的分类效果调整数据权重,如果某一个数据在这次分错了,那么在下一次我就会给它更大的权重。
最终的结果:每个分类器根据自身的准确性来确定各自的权重,再合并结果。
Adaboost工作流程
每一次切一刀,最终合在一起,弱分类器效果就更好了
Stacking模型
堆叠:很暴力,拿来一堆分类器直接上
可以堆叠各种各样的分类器( KNN,SVM,RF等等)
为了刷结果,不择手段!
分阶段:第一阶段得出各自结果,第二阶段再用前一阶段结果训练
堆叠在一起确实能使得准确率提升,但是速度是个问题。
相关文章:

集成算法:Bagging模型、AdaBoost模型和Stacking模型
概述 目的:让机器学习效果更好,单个不行,集成多个 集成算法 Bagging:训练多个分类器取平均 f ( x ) 1 / M ∑ m 1 M f m ( x ) f(x)1/M\sum^M_{m1}{f_m(x)} f(x)1/M∑m1Mfm(x) Boosting:从弱学习器开始加强&am…...
DW怎么Python:探索Dreamweaver与Python的交织世界
DW怎么Python:探索Dreamweaver与Python的交织世界 在数字世界的广袤天地中,Dreamweaver(简称DW)与Python这两大工具各自闪耀着独特的光芒。DW以其强大的网页设计和开发能力著称,而Python则以其简洁、易读和强大的编程…...

算法(十三)回溯算法---N皇后问题
文章目录 算法概念经典例子 - N皇后问题什么是N皇后问题?实现思路 算法概念 回溯算法是类似枚举的深度优先搜索尝试过程,主要是再搜索尝试中寻找问题的解,当发生不满足求解条件时,就会”回溯“返回(也就是递归返回&am…...

论文阅读:Correcting Motion Distortion for LIDAR HD-Map Localization
目录 概要 Motivation 整体架构流程 技术细节 小结 论文地址:http://arxiv.org/pdf/2308.13694.pdf 代码地址:https://github.com/mcdermatt/VICET 概要 激光雷达的畸变矫正是一个非常重要的工作。由于扫描式激光雷达传感器需要有限的时间来创建…...

Git操作笔记
学git已经好多次了。但是还是会忘记很多的东西,一些常用的操作命令和遇到的bug以后在这边记录汇总下 一.github图片展示 图片挂载,我是创建了一个库专门存图片,然后在github的md中用专用命令展示图片,这样你的md就不会全是文字那…...
使用Python进行数据分析的基本步骤
简介: 在当今的数据驱动世界中,数据分析已成为各行各业不可或缺的一部分。Python作为一种强大的编程语言,提供了丰富的库和工具,使得数据分析变得简单易行。本文将带你了解使用Python进行数据分析的基本步骤。 一、数据获取 从外…...

NGINX优化
NGINX优化分为两个方面: 一. nginx应用配置文件的优化: 1.nginx的性能优化: 全局块: 设置工作进程数: work_processes #设置工作进程数 设置工作进程连接数:work_rilmit_nofile #设置每个worker进程最大可…...

【LeetCode刷题】二分查找:山脉数组的峰顶索引、寻找峰值
【LeetCode刷题】Day 13 题目1:852.山脉数组的峰顶索引思路分析:思路1:暴力枚举O(N)思路2:二分查找O(logN) 题目2:162.寻找峰值思路分析:思路1:二分查找O(logN) 题目1:852.山脉数组的…...
《Python学习》-- 实操篇一
一、文件操作 1. 1 读取文本文件 # 文件操作模式 # r (默认) - 只读模式。文件必须存在,否则会抛出FileNotFoundError。在这种模式下,你只能读取文件内容,不能写入或追加。 # w - 写入模式。如果文件存在,内容会被清空ÿ…...
C# 集合(二) —— List/Queue类
总目录 C# 语法总目录 集合二 List/Queue 1. List2. Queue 1. List List有ArrayList和LinkedList ArrayList 类似数组,查找快,插入删除慢(相对)LinkedList 类似双向链表,查找慢(相对),插入删除快 //ArrayList //ArrayList Arr…...
【TB作品】MSP430 G2553 单片机口袋板,读取单片机P1.4电压显示,ADC
功能 读取P1.4电压,显示到口袋板显示屏,电压越高亮灯越多。 部分程序 while (1){ADC10CTL0 | ENC ADC10SC; // Sampling and conversion startLPM0;adcvalue ADC10MEM; //原始数据 0到1023adtest (float) adcvalue / 1024.…...

知乎x-zse-96、x-zse-81
声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章未…...

【Linux】Linux工具——yum,vim
1.Linux 软件包管理器——yum Linux安装软件: 源代码安装(不建议)rpm安装(类似Linux安装包,版本可能不兼容,不推荐,容易报错)yum安装(解决了安装源,安装版本&…...

ES 生命周期管理
一 .概念 ILM定义了四个生命周期阶段:Hot:正在积极地更新和查询索引。Warm:不再更新索引,但仍在查询。cold:不再更新索引,很少查询。信息仍然需要可搜索,但是如果这些查询速度较慢也可以。Dele…...
【JavaScript脚本宇宙】揭秘HTTP请求库:深入理解它们的特性与应用
深度揭秘:六大HTTP请求库的比较与应用 前言 在这篇文章中,我们将探讨六种主要的HTTP请求库。这些库为处理网络请求提供了不同的工具和功能,包括Axios、Fetch API、Request、SuperAgent、Got和Node-fetch。通过本文,你将对每个库…...

【强化学习】DPO(Direct Preference Optimization)算法学习笔记
【强化学习】DPO(Direct Preference Optimization)算法学习笔记 RLHF与DPO的关系KL散度Bradley-Terry模型DPO算法流程参考文献 RLHF与DPO的关系 DPO(Direct Preference Optimization)和RLHF(Reinforcement Learning f…...

vue3 todolist 简单例子
vue3 简单的TodList 地址: https://gitee.com/cheng_yong_xu/vue3-composition-api-todo-app-my 效果 step-1 初始化项项目 我们不采用vue cli 搭建项目 直接将上图文件夹,复制到vscode编辑器,清空App.vue的内容 安装包 # 安装包 npm…...
Linux项目编程必备武器!
本文目录 一、更换源服务器二、下载man开发手册(一般都自带,没有的话使用下面方法下载) 一、更换源服务器 我们使用apt-get等下载命令下载的软件都是从源服务器上获取的,有些软件包在某个服务器上存在,而另一个服务器不存在。所以我们可以添加…...
AndroidStudio编译很慢问题解决
如果gradle同步、编译下载很慢,可以换一下仓库阿里云镜像 repositories {maven { url https://maven.aliyun.com/repository/google } maven { url https://maven.aliyun.com/repository/jcenter } maven { url https://maven.aliyun.com/repository/public } goog…...

PHAR反序列化
PHAR PHAR(PHP Archive)文件是一种归档文件格式,phar文件本质上是一种压缩文件,会以序列化的形式存储用户自定义的meta-data。当受影响的文件操作函数调用phar文件时,会自动反序列化meta-data内的内容,这里就是我们反序…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...