当前位置: 首页 > news >正文

Python画图(多图展示在一个平面)

天行健,君子以自强不息;地势坤,君子以厚德载物。


每个人都有惰性,但不断学习是好好生活的根本,共勉!


文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。

文章目录

  • 一、准备表格数据
  • 二、读取表格数据
    • 1. 引入所需库
    • 2. 读取文件数据
    • 3. 打印模型数据
  • 三、将多图画在一个平面上展示
    • 1. 获取模型中的列字段数量
    • 2. 遍历列字段并画图
    • 3. 展示平面图
    • 4. 保存图片
  • 四、完整代码
  • 六、执行后的输出展示
    • 1. 控制带输出
    • 2. 画图结果输出
    • 3. 保存的视图查看


关于python读取Excel表格数据并并画图保存简单实现可参考:
Python读取Excel表格数据并画图保存(pandas读取、matplotlib画图)

如何将多个图画在同一个平面上展示,如下
在这里插入图片描述
文章所需excel表格文件和完整代码文件已打包上传到CSDN资源库,点击链接直接获取
Python matplotlib画图 pandas表格数据读取 将多个图画在同一个平面内

一、准备表格数据

准备一个Excel文件,并填充数据
创建文件test01.xlsx
将sheet页名称该位car
填充三个字段speed_km_h、temp_c、time_s
填充数据,如下图
在这里插入图片描述

二、读取表格数据

读取表格中的数据,并将读取的模型数据打印输出到控制台
注:需提前下载对应的库信息,可参考文首文章链接

1. 引入所需库

引入pandas库用于读取表格文件
引入matplotlib库用于画图

#引入pandas用于读取
import pandas as pd
#引入matplotlib用于画图
import matplotlib.pyplot as plt

2. 读取文件数据

通过pandas库的函数读取表格文件数据

#使用pandas读取excel表,可指定sheet页的名字
df = pd.read_excel("./test01.xlsx",sheet_name="car")

3. 打印模型数据

打印模型数据

#打印读取的模型
print("df: ",df)print("="*100)

输出如下
在这里插入图片描述

三、将多图画在一个平面上展示

1. 获取模型中的列字段数量

根据前面读取的数据模型,获取模型中列字段的个数,后续根据列的个数决定输出图的个数

#打印出新模型的列字段数量
field = df.columns.size
print(field)

2. 遍历列字段并画图

根据列字段进行画图,先选择一个字段作为横坐标,然后将所有字段当做纵坐标进行画图

#遍历模型的所有字段
for i, item in enumerate(list(df.columns)):#打印字段值print(i, item)print("="*100)# if item == "time_s":# continue#定义打印视图的参数,field表示线形图的数量,1表示将线形图放在一个图中,i+1表示遍历打印视图,该参数不能为0,所以需要加一plt.subplot(field, 1, i+1)#打印,以tims_s为横轴,三个字段speed_km_h、time_s、temp_c为纵轴画图plt.plot(df["time_s"], df[item])

3. 展示平面图

将整个平面图展示出来

#将整个视图展示
plt.show()

4. 保存图片

在展示的函数show()之前使用savefig()保存图片

# 保存图片到本地,保存在当前位置,以jpg格式存储
filename = "car"
plt.savefig(f"./{filename}.jpg")

四、完整代码

以下为完整代码

#引入pandas用于读取
import pandas as pd
#引入matplotlib用于画图
import matplotlib.pyplot as plt#需要下载openpyxl,pandas#使用pandas读取excel表,可指定sheet页的名字
df = pd.read_excel("./test01.xlsx",sheet_name="car")#打印读取的模型
print("df: ",df)print("="*100)#打印表头字段
print("df.colums: ",df.columns)print("="*100)#打印出新模型的列字段数量
field = df.columns.size
print(field)#遍历模型的所有字段
for i, item in enumerate(list(df.columns)):#打印字段值print(i, item)print("="*100)# if item == "time_s":# continue#定义打印视图的参数,field表示线形图的数量,1表示将线形图放在一个图中,i+1表示遍历打印视图,该参数不能为0,所以需要加一plt.subplot(field, 1, i+1)#打印,以tims_s为横轴,三个字段speed_km_h、time_s、temp_c为纵轴画图plt.plot(df["time_s"], df[item])# 保存图片到本地,保存在当前位置,以jpg格式存储
filename = "car"
plt.savefig(f"./{filename}.jpg")#将整个视图展示
plt.show()

六、执行后的输出展示

执行完整代码,查看输出结果

1. 控制带输出

控制台输出如下
在这里插入图片描述

2. 画图结果输出

画图结果输出如下,横轴为时间,纵轴为三个字段,三个图在同一平面展示
在这里插入图片描述

3. 保存的视图查看

如图所示,保存位置为当前位置,名称为car.jpg,内容如下
在这里插入图片描述


感谢阅读,祝君暴富!

相关文章:

Python画图(多图展示在一个平面)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

python-web应用程序-Django数据库-操作表中的数据

python-web应用程序-Django数据库-操作表中的数据 一、新增数据 类.objects.create(字段名 字段值,字段名 字段值,...)导入models包 models.User.objects.create(nameyulin,sex0,info三好学生)即可对数据进行操作 二、删除数据 类.objects.filter(…...

绕过WAF(Web应用程序防火墙)--介绍、主要功能、部署模式、分类及注入绕过方式等

网站WAF是一款集网站内容安全防护、网站资源保护及网站流量保护功能为一体的服务器工具。功能涵盖了网马/木马扫描、防SQL注入、防盗链、防CC攻击、网站流量实时监控、网站CPU监控、下载线程保护、IP黑白名单管理、网页防篡改功能等模块。能够为用户提供实时的网站安全防护&…...

11.7 堆排序

目录 11.7 堆排序 11.7.1 算法流程 11.7.2 算法特性 11.7 堆排序 Tip 阅读本节前,请确保已学完“堆“章节。 堆排序(heap sort)是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”…...

Patchwork++:基于点云的快速、稳健的地面分割方法

1. 背景 论文发表在2022IROS,是Patchwork的改进版本。算法通过数学方法进行快速而鲁棒性很强的地面分割,在智能机器人上的可操作性非常强。通过微调算法,可以应用于16-beams等多种规格的激光雷达。由于激光雷达点云数据标注的难度非常大&…...

Llama改进之——分组查询注意力

引言 今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-query attention,GQA)1。 Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下…...

英伟达开源新利器NV-Embed向量模型,基于双向注意力的LLM嵌入模型,MTEB 56项任务排名第一

前言 文本嵌入模型能够将文本信息转化为稠密的向量表示,并在信息检索、语义相似度计算、文本分类等众多自然语言处理任务中发挥着关键作用。近年来,基于解码器的大型语言模型 (LLM) 开始在通用文本嵌入任务中超越传统的 BERT 或 T5 嵌入模型&#xff0c…...

JVM之【GC-垃圾清除算法】

Java虚拟机(JVM)中的垃圾收集算法主要分为以下几种: 标记-清除算法(Mark-Sweep)复制算法(Copying)标记-整理算法(Mark-Compact)分代收集算法(Generational C…...

数据分析每周挑战——心衰患者特征数据集

这是一篇关于医学数据的数据分析,但是这个数据集数据不是很多。 背景描述 本数据集包含了多个与心力衰竭相关的特征,用于分析和预测患者心力衰竭发作的风险。数据集涵盖了从40岁到95岁不等年龄的患者群体,提供了广泛的生理和生活方式指标&a…...

单例模式(Java实现)

我的相关文章: JavaSE 学习记录-CSDN博客 多线程笔记-CSDN博客 单例模式(Java实现)-CSDN博客 JUC笔记-CSDN博客 注解与反射(Java,类加载机制,双亲委派机制)-CSDN博客 1. 懒汉式线程不安全 pu…...

24.面向对象六大原则

目录介绍 00.面向对象六大原则01.代码单一职责原则02.代码开放封闭原则03.代码里氏替换原则04.代码依赖倒置原则05.代码接口隔离原则06.代码迪米特原则00.面向对象六大原则 六大原则一句话介绍 单一职责原则:指一个类的功能要单一,不能包罗万象。开放封闭原则:指一个模块在扩…...

Vue3-shallowRef与shallowReactive

shallowRef 作用:创建一个响应式数据,但只对顶层属性进行响应式处理。 用法: let myVar shallowRef(initialValue);特点:只跟踪引用值的变化,不关心值内部的属性变化。 shallowReactive 作用:创建一个浅…...

CI/CD(基于ESP-IDF)

主要参考资料 B站乐鑫信息科技《【乐鑫全球开发者大会】DevCon23 #15 |通过 CI/CD 进行流水线开发》 pytest-embedded乐鑫文档: https://docs.espressif.com/projects/pytest-embedded/en/latest/api.html 目录 CI/CD简介乐鑫内部CI/CD测试GitLab CI/CDGitHub Actio…...

聚观早报 | 东风奕派eπ008将上市;苹果Vision Pro发布会

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 6月3日消息 东风奕派eπ008将上市 苹果Vision Pro发布会 特斯拉Model 3高性能版开售 小米14推送全新澎湃OS系统 …...

k8s牛客面经篇

k8s的pod版块: k8s的网络版块: k8s的deployment版块: k8s的service版块: k8s的探针板块: k8s的控制调度板块: k8s的日志监控板块: k8s的流量转发板块: k8s的宏观版块:...

第9周 基于MinIO与OSS实现分布式与云存储

第9周 基于MinIO与OSS实现分布式与云存储 1. 基于mybatis-plus数据修改非空属性忽略更新2. 文件上传3. 分布式文件存储3.1 文件存储架构演变4. Minio docker安装5. 文件服务整合minio依赖minio API测试yml配置minio信息minio配置类业务:上传文件6. 云存储阿里OSS:要钱6.1 依赖6…...

【Linux内核-编程指南】

■ IPC组件 添加链接描述 ■ ■ ■ ■ ■...

Go 编程风格指南 - 最佳实践

Go 编程风格指南 - 最佳实践 原文:https://google.github.io/styleguide/go 概述 | 风格指南 | 风格决策 | 最佳实践 注意: 本文是 Google Go 风格 系列文档的一部分。本文档是 规范性(normative) 但不是强制规范(canonical),并且从属于Goo…...

awk的应用

步骤一:awk的基本用法 1)基本操作方法 格式1:awk [选项] [条件]{指令} 文件 格式2:前置指令 | awk [选项] [条件]{指令} 其中,print 是最常用的编辑指令;若有多条编辑指令,可用分号分隔。 …...

【网络原理】HTTP|认识请求“报头“|Host|Content-Length|Content-Type|UA|Referer|Cookie

目录 认识请求"报头"(header) Host Content-Length Content-Type User-Agent(简称UA) Referer 💡Cookie(最重要的一个header,开发&面试高频问题) 1.Cookie是啥? 2.Cookie怎么存的? …...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...