群体优化算法---蝙蝠优化算法分类Iris数据集
介绍
蝙蝠算法(Bat Algorithm, BA)是一种基于蝙蝠回声定位行为的优化算法。要将蝙蝠算法应用于分类问题,可以通过将蝙蝠算法用于优化分类器的参数,图像分割等
本文示例
我们使用一个经典的分类数据集,如Iris数据集,通过优化SVM的参数(C和gamma)来提高分类准确性
代码
function bat_algorithm_svm_classification% 加载数据集data = load('fisheriris');X = data.meas;y = grp2idx(data.species);% 参数设置numBats = 30; % 蝙蝠数量maxGen = 50; % 最大迭代次数alpha = 0.9; % 衰减因子gamma = 0.9; % 吸引度系数Qmin = 0; % 最小频率Qmax = 2; % 最大频率A = 0.5; % 响度r = 0.5; % 脉冲发射率% 初始化蝙蝠位置和速度bats = rand(numBats, 2); % 位置: [C, gamma]velocities = zeros(numBats, 2);fitness = zeros(numBats, 1);% 初始化全局最优解bestBat = bats(1, :);bestFitness = inf;% 计算初始适应度for i = 1:numBatsfitness(i) = evaluate_svm(X, y, bats(i, :));if fitness(i) < bestFitnessbestFitness = fitness(i);bestBat = bats(i, :);endend% 主循环for t = 1:maxGenfor i = 1:numBats% 更新频率Q = Qmin + (Qmax - Qmin) * rand;% 更新速度velocities(i, :) = velocities(i, :) + (bats(i, :) - bestBat) * Q;% 更新位置newBat = bats(i, :) + velocities(i, :);% 边界约束newBat = max(newBat, -5);newBat = min(newBat, 5);% 随机移动if rand > rnewBat = bestBat + 0.1 * randn(1, 2);end% 计算新位置的适应度newFitness = evaluate_svm(X, y, newBat);% 接受新解if newFitness < fitness(i) && rand < Abats(i, :) = newBat;fitness(i) = newFitness;end% 更新全局最优解if newFitness < bestFitnessbestFitness = newFitness;bestBat = newBat;endend% 调整响度和脉冲发射率A = alpha * A;r = r * (1 - exp(-gamma * t));disp(['Generation ', num2str(t), ': Best Fitness = ', num2str(bestFitness)]);end% 校正后的参数optimalC = 2^bestBat(1);optimalGamma = 2^bestBat(2);% 输出结果disp(['Optimal C: ', num2str(optimalC), ', Optimal gamma: ', num2str(optimalGamma)]);
endfunction accuracy = evaluate_svm(X, y, params)% 将参数C和gamma转换为SVM参数C = 2^params(1);gamma = 2^params(2);% 使用SVM进行分类t = templateSVM('KernelFunction', 'rbf', 'BoxConstraint', C, 'KernelScale', 1/sqrt(2*gamma));model = fitcecoc(X, y, 'Learners', t);% 进行交叉验证CVModel = crossval(model, 'KFold', 5);classLoss = kfoldLoss(CVModel);% 计算分类准确率accuracy = 1 - classLoss;
end
效果



说明
加载数据集:使用Iris数据集进行分类任务
参数设置:定义蝙蝠算法的参数,包括蝙蝠数量、迭代次数、频率范围、响度和脉冲发射率等
初始化蝙蝠位置和速度:随机生成蝙蝠的位置和速度
计算初始适应度:使用SVM模型评估每只蝙蝠的位置,并找到初始全局最优解
主循环:迭代更新蝙蝠的位置和速度,通过频率、响度和脉冲发射率调整蝙蝠的位置
评估适应度:使用交叉验证评估SVM模型的分类准确性
输出结果:输出优化后的SVM参数(C和gamma)
相关文章:
群体优化算法---蝙蝠优化算法分类Iris数据集
介绍 蝙蝠算法(Bat Algorithm, BA)是一种基于蝙蝠回声定位行为的优化算法。要将蝙蝠算法应用于分类问题,可以通过将蝙蝠算法用于优化分类器的参数,图像分割等 本文示例 我们使用一个经典的分类数据集,如Iris数据集&…...
【C++】类和对象1.0
本鼠浅浅介绍一些C类和对象的知识,希望能得到读者老爷们的垂阅! 目录 1.面向过程和面向对象 2.类的引入 3.类的定义 4.类的访问限定符及封装 4.1.类的访问限定符 4.2.封装 5.C中struct和class的区别 6.类域 7.类的实例化 8.类对象模型 8.1.类…...
Linux下gcc编译32位程序报错
gcc使用-m32选项,编译32位程序时,报错:/usr/include/stdio.h:27:10: fatal error: bits/libc-header-start.h: No such file or directory gcc编译32位程序时,报错:/usr/include/stdio.h:27:10: fatal error: bits/li…...
godot.bk
1.搜索godot国内镜像,直接安装,mono是csharp版本 2.直接解压,50m,无需安装,直接运行 3.godot里分为场景,节点 主场景用control场景,下面挂textureact放背景图片,右键实例化子场景把…...
【C++修行之道】类和对象(三)拷贝构造函数
目录 一、 概念 二、特征 正确的拷贝构造函数写法: 拷贝函数的另一种写法 三、若未显式定义,编译器会生成默认的拷贝构造函数。 四、编译器生成的默认拷贝构造函数已经可以完成字节序的值拷贝了,还需要自己显式实现吗? 深拷…...
校园外卖系统的技术架构与实现方案
随着校园生活的日益现代化,外卖需求在高校学生群体中迅速增长。为了满足这一需求,校园外卖系统应运而生。本文将详细探讨校园外卖系统的技术架构及其实现方案,帮助读者了解这一系统的核心技术与实现路径。 一、系统概述 校园外卖系统主要包…...
AI的制作思维导图
AI(人工智能)的实现通常涉及以下几个步骤: 1.问题定义:首先确定你想要解决的问题是什么,这将决定你需要设计什么样的系统。 2.数据收集:根据你的需求,收集相关的数据集来训练你的AI模型。数据的…...
Amazon云计算AWS(四)
目录 八、其他Amazon云计算服务(一)快速应用部署Elastic Beanstalk和服务模板CloudFormation(二)DNS服务Router 53(三)虚拟私有云VPC(四)简单通知服务和简单邮件服务(五&…...
数据库(21)——数值函数
数值函数 函数功能CEIL(x)向上取整FLOOR(x)向下取整MOD(x,y)返回x/y的余数RAND()返回0~1内的随机数ROUND(x,y) 求参数x的四舍五入的值,保留y位小数 演示 select ceil(66.4); select floor(8.9); select mod(3,10); select rand(); select round…...
【PB案例学习笔记】-15怎样限制应用程序运行次数?
写在前面 这是PB案例学习笔记系列文章的第15篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…...
Spring为什么不支持static字段注入
Spring不支持直接依赖注入到静态变量中。在Spring框架中,依赖注入是一个核心概念,它允许开发者将对象间的依赖关系定义转移到容器中,由容器负责管理这些依赖关系。然而,当涉及到静态变量时,情况就变得复杂了。 首先从…...
AI数据分析:用Kimi根据Excel表格数据绘制多条折线图
工作任务:将Excel文件中的学生姓名和他们的语文、数学、英语成绩绘制成三条折线图,以便于比较不同科目的成绩分布情况。 在kimi中输入提示词: 你是一个Python编程专家,要完成一个Python脚本编写的任务,具体步骤如下&a…...
高级 Go 程序设计:使用 net/http/httputil 包构建高效网络服务
高级 Go 程序设计:使用 net/http/httputil 包构建高效网络服务 介绍ReverseProxy 的使用基本概念实现步骤高级配置实际案例 DumpRequest 的使用功能说明代码示例应用场景NewSingleHostReverseProxy 的特性功能概述 详细教程 注意事项使用 NewChunkedWriter 实现高效…...
Android11 AudioTrack 创建过程
Android 系统播放声音,需要创建AudioTrack来和AudioFlinger通信,其创建过程如下 根据传入的声音属性得到output通过得到的output,找到播放线程AudioFlinger在播放线程内,创建Track,和AudioTrack对应。后续通过它们进…...
数学建模 —— 层次分析法(2)
目录 一、层次分析法(AHP) 二、构造比较判断矩阵 2.1 两两比较法 三、单准则下的排序及一致检验 3.1 单准则下的排序 3.2 一致性检验 四、层次总排序 4.1 层次总排序的步骤 4.2 总排序一致性检验 一、层次分析法(AHP) 方…...
Nvidia Jetson/Orin +FPGA+AI大算力边缘计算盒子:人工智能消防应用
青鸟消防股份有限公司成立于2001年6月,于2019年8月在深圳证券交易所挂牌上市,成为中国消防报警行业首家登陆A股的企业。公司始终聚焦于消防安全与物联网领域,主营业务为“一站式”消防安全系统产品的研发、生产和销售。公司产品已覆盖了火灾报…...
Flutter 中的 KeepAlive 小部件:全面指南
Flutter 中的 KeepAlive 小部件:全面指南 Flutter 是一个由 Google 开发的跨平台 UI 框架,它允许开发者使用 Dart 语言构建高性能、美观的移动、Web 和桌面应用。在 Flutter 的丰富组件库中,KeepAlive 是一个用于维护组件活跃状态的组件&…...
C语言 恼人的结合性和优先级和副作用
结合性和优先级和副作用 1.优先级2.结合性3.副作用4.简单区分i,i,i1;ii1;ii 1.优先级 优先级指的是,如果⼀个表达式包含多个运算符,哪个运算符应该优先执⾏。各种运算符的优先级是 不⼀样的。 在C语言中&a…...
Vue——初识组件
文章目录 前言页面的构成何为组件编写组件组件嵌套注册 效果展示 前言 在官方文档中,对组件的知识点做了一个很全面的说明。本篇博客主要写一个自己的案例讲解。 vue 官方文档 组件基础 页面的构成 说到组件之前,先大致说明下vue中页面的构成要素。 在…...
MQ消息丢失/重复/顺序/挤压
rabbitmq消息丢失解决 rocketMq解决消息丢失 RocketMQ事务消息概要 RocketMQ事务消息是指应用本地事务和发送消息操作可以被定义到全局事务中,要么同时成功,要么同时失败。 采用了2PC(两阶段提交) 补偿机制(事务状态回…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
