当前位置: 首页 > news >正文

CV每日论文--2024.6.4

1、Mixed Diffusion for 3D Indoor Scene Synthesis

中文 标题:用于 3D 室内场景合成的混合扩散

简介:这篇论文提出了一种名为MiDiffusion的混合离散-连续扩散模型,用于从给定的房间类型、平面图和可能存在的物体中合成逼真的3D室内场景。

作者指出,该方法在混合离散语义和连续几何领域实现了结构化损坏,为反向去噪步骤提供了更好的条件。在3D-FRONT数据集上的实验结果显示,MiDiffusion在地板条件下的3D场景合成方面明显优于现有的自回归和扩散模型。

此外,该模型可以通过损坏和遮盖策略处理部分对象约束,无需特定任务的训练。作者还展示了MiDiffusion在场景完成和家具布置实验中相对于现有方法的明显优势。

总的来说,MiDiffusion在混合离散-连续表示以及处理部分对象约束等方面展现了强大的性能,为3D室内场景合成带来了新的解决方案。

2、Unified Directly Denoising for Both Variance Preserving and Variance Exploding Diffusion Models

中文标题:方差保持和方差爆炸扩散模型的统一直接去噪

简介:这篇论文提出了一种统一的直接去噪扩散模型(uDDDM)框架,可以在方差保持(VP)和方差爆炸(VE)两种情况下实现高质量的一步/多步图像生成。

研究指出,之前的DDDM模型使用的伪LPIPS损失函数存在评估偏差的问题。为此,作者提出了自适应Pseudo-Huber损失函数,以平衡收敛到真实解和收敛过程的稳定性。同时,作者还给出了模型解路径存在和唯一性的理论证明,以及采样路径的不相交性质。

通过全面评估,研究证明uDDDM在VP和VE两种情况下均能实现与CIFAR-10最佳表现方法相当的FID得分。在CIFAR10数据集上,uDDDM的一步生成FID分别为2.63和2.53,通过将采样扩展到1000步,FID分数进一步降至1.71和1.65,达到了最先进的性能水平。

总的来说,uDDDM框架为直接去噪扩散模型提供了一种统一的解决方案,在图像生成质量和采样效率方面都取得了显著的性能提升。

3、Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models

中文标题:扩散模型的频谱感知参数高效微调

简介:这篇论文提出了一种新颖的面向频谱的生成模型适应框架,旨在以参数高效的方式将大规模预训练生成模型适应于特定任务。

传统的低秩适应方法通过施加约束来实现参数效率,但对于需要高表示能力的任务可能并不是最优的。作者提出了一种称为谱正交分解适应(SODA)的方法,通过调整预训练权重的奇异值和它们的基向量来实现参数高效的适应。使用Kronecker乘积和高效的Stiefel优化器,SODA能够实现正交矩阵的参数高效适应,在平衡计算效率和表示能力方面表现出色。

通过在文本到图像扩散模型上的广泛评估,研究证明了SODA的有效性,为现有微调方法提供了一种面向频谱的替代方案。该方法为如何以参数高效的方式将大规模预训练生成模型适应于特定任务提供了新的思路和解决方案。

相关文章:

CV每日论文--2024.6.4

1、Mixed Diffusion for 3D Indoor Scene Synthesis 中文 标题:用于 3D 室内场景合成的混合扩散 简介:这篇论文提出了一种名为MiDiffusion的混合离散-连续扩散模型,用于从给定的房间类型、平面图和可能存在的物体中合成逼真的3D室内场景。 作者指出,该…...

Android bw_costly_<iface>链

测试时关注到bw_costly_链 因为和iface有关。猜测这个链是动态生成的。 开关数据业务测试,果然关闭数据业务后,bw_OUTPUT中不再会调用bw_costly_rmnet_data3,也没有bw_costly_rmnet_data3这个链了。 再次打开数据业务后出现了bw_costly_rmnet…...

TypeScript 项目,自身 package 是 A,它引用了 B package。项目编译时,选择依赖版本的机制是什么?

在 TypeScript 项目中,当 package A 引用了 package B,编译 A 的过程中,B package 将按照 B package 自身的 package.json 文件中指定的各个库的版本进行编译,而不是按照 A package 中的库版本。 每个 package 都有自己的依赖项和…...

【数据结构】链表----头结点的作用

链表是一种常见的数据结构,由一系列节点(Node)组成,每个节点包含数据和指向下一个节点的指针。链表的头结点(Head Node)也称为哨兵位,是链表的起点,通常有以下几个重要作用&#xff…...

(CVPRW,2024)可学习的提示:遥感领域小样本语义分割

文章目录 相关资料摘要引言方法训练基础类别新类别推理 相关资料 论文:Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain 代码:https://github.com/SteveImmanuel/OEM-Few-Shot-Learnable-Prompt 摘要 小样本分割是一项…...

tinyrenderer-切线空间法线贴图

法线贴图 法线贴图分两种,一种是模型空间中的,一种是切线空间中的 模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz,与顶点坐标处于一个空间,图片是五颜六色的。 切线空间中的法线贴图的rgb同样对应xyz,是切线…...

C++的vector使用优化

我们在上一章说了如何使用这个vector动态数组,这章我们说说如何更好的使用它以及它是如何工作的。当你创建一个vector,然后使用push_back添加元素,当当前的vector的内存不够时,会从内存中的旧位置复制到内存中的新位置&#xff0c…...

关于stm32的复用和重映射问题

目录 需求IO口的复用和重映射使用复用复用加重映射 总结参考资料 需求 一开始使用stm32c8t6,想实现pwm输出,但是原电路固定在芯片的引脚PB10和PB11上,查看了下引脚的功能,需要使用到复用功能。让改引脚作为定时器PWM的输出IO口。…...

遍历数组1

package demo; import java.util.ArrayList; public class Arrilist { public static void main(String[] args) { ArrayList<String>listnew ArrayList<>(); list.add("汤神"); list.add("yyx"); list.add("hong go…...

Go语言 一些问题了解

一、读取文件数据&#xff0c;是阻塞还是非阻塞的&#xff1f; 分两种情况&#xff1a;常规读取文件数据&#xff0c;和网络IO读取数据 1. 常规读取文件数据&#xff1a; io.Reader 和 bufio.Reader 是阻塞进行的。 bufio.Reader 提供缓冲的读取操作&#xff0c;意味着数据是…...

C++ Primer 第五版 第15章 面向对象程序设计

面向对象程序设计基于三个基本概念&#xff1a;数据抽象、继承和动态绑定。 继承和动态绑定对编写程序有两方面的影响&#xff1a;一是我们可以更容易地定义与其他类相似但不完全相同的新类&#xff1b;二是在使用这些彼此相似的类编写程序时&#xff0c;我们可以在一定程度上…...

finebi或者finereport发邮件

我们二次开发中&#xff0c;如果想利用产品自带的发邮件的功能&#xff0c;来发送自己的邮件内容。 首先 决策系统中邮件相关信息要配置好之后&#xff1a; 这里配好了发件人&#xff0c;以及默认发件人后&#xff0c; private void sendEmail(String content,String subject)…...

基于聚类和回归分析方法探究蓝莓产量影响因素与预测模型研究

&#x1f31f;欢迎来到 我的博客 —— 探索技术的无限可能&#xff01; &#x1f31f;博客的简介&#xff08;文章目录&#xff09; 目录 背景数据说明数据来源思考 正文数据预处理数据读取数据预览数据处理 相关性分析聚类分析数据处理确定聚类数建立k均值聚类模型 多元线性回…...

【数据结构】从前序与中序遍历,或中序与后序遍历序列,构造二叉树

欢迎浏览高耳机的博客 希望我们彼此都有更好的收获 感谢三连支持&#xff01; 首先&#xff0c;根据先序遍历可以确定根节点E&#xff0c;再在中序遍历中通过E确定左树和右数 &#xff1b; 设立inBegin和inEnd&#xff0c;通过这两个参数的游走&#xff0c;来进行子树的创建&a…...

ARM公司发展历程

Arm从1990年成立前开始&#xff0c;历经漫长岁月树立各项公司里程碑及产品成就&#xff0c;一步步成为全球最普及的运算平台。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; Acorn 时期 1978年&#xff0c;Chris Curry和Hermann Hauser共同创立了Acorn…...

C# :IQueryable IEnumerable

文章目录 1. IEnumerable2. IQueryable3. LINQ to SQL4. IEnumerable & IQueryable4.1 Expression4.2 Provider 1. IEnumerable namespace System.Collections: public interface IEnumerable {public IEnumerator GetEnumerator (); }public interface IEnumerator {pubi…...

三、生成RPM包

文章目录 1、编译生成so、bin 通过此工程编译生成so\bin文件 2、将so\bin打包到rpm中 ###### 1.生成可执行文件、库文件 ######### cmake_minimum_required(VERSION 3.15)project(compute) set(target zls_bin) set(target2 libcompute.so) # 依赖的头文件 include_directori…...

单实例11.2.0.4迁移到11.2.0.4RAC_使用rman异机恢复

保命法则&#xff1a;先备份再操作&#xff0c;磁盘空间紧张无法备份就让满足&#xff0c;给自己留退路。 场景说明&#xff1a; 1.本文档的环境为同平台、不同版本&#xff08;操作系统版本可以不同&#xff0c;数据库版本相同&#xff09;&#xff0c;源机器和目标机器部分…...

MySQL之查询性能优化(二)

查询性能优化 慢查询基础:优化数据访问 查询性能低下最基本的原因是访问的数据太多。某些查询可能不可避免地需要筛选大量数据&#xff0c;但这并不场景。大部分性能低下的查询都可以通过减少访问的数据量的方式进行优化。对于低效的查询&#xff0c;我们发现通过下面两个步骤…...

The Best Toolkit 最好用的工具集

The Best Toolkit 工欲善其事&#xff0c;必先利其器&#xff0c;整理过往工作与生活中遇到的最好的工具软件 PDF合并等 PDF24 Tools PDF查看器 SumatraPDF 可以使用黑色来查看&#xff0c;相对不伤眼睛&#xff0c;也有电子书相关的阅读器 Kindle pdf裁边工具 briss 软件卸载…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...