当前位置: 首页 > news >正文

tinyrenderer-切线空间法线贴图

法线贴图
法线贴图分两种,一种是模型空间中的,一种是切线空间中的
在这里插入图片描述
模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz,与顶点坐标处于一个空间,图片是五颜六色的。
在这里插入图片描述
切线空间中的法线贴图的rgb同样对应xyz,是切线空间里的坐标,切线空间里的z轴正向垂直与当前三角形便宜,x是当前三角形片元表面的一个切线,y是他们的叉积。
切线空间每个轴范围是-1到1.但图片本身0-255对应的是0-1.而多数法线都是都是(0,0,1)(即当前像素的法向量刚好就是当前片元的顶点法向量)转换到颜色空间就是(0.5,0.5,1)(法向量坐标可能为负,但颜色范围始终为正)。因此图片主要是蓝紫色

两个完全一样材质的物体,由于位置不同光照也会不同。如果用模型空间存储的法线贴图,是绝对法线,法向量会完全不同,无法使用同一张物体。而切线空间存储的法线贴图完全是基于物体自身的,是相对法线,多个物体可以复用(优点)。但再实际计算时,需要根据物体本身的缩放位移做相应的矩阵转换处理(缺点)

模型空间的法线贴图直接提取向量信息做为法线向量即可

Vec3f Model::getNormal(float x, float y) {TGAColor n = normalTex_.get(x * normalTex_.get_width(), y * normalTex_.get_height());Vec3f res;for (int i = 0; i < 3; i++) {res[i] = n.bgra[i] / 255.f * 2 - 1.f;}return res;
}
//....
struct normalTexShader :public IShader {mat<2, 3, float> uv;virtual Vec4f vertex(int iface, int vertIdx, Matrix mvp) {Vec3f v = model->vert(model->face(iface)[vertIdx]);uv.set_col(vertIdx, model->tverts(model->tface(iface)[vertIdx]));return mvp * embed<4>(v);}virtual bool fragment(Vec3f barycentricCoordinates, TGAColor& color) {Vec2f texcoords = uv * barycentricCoordinates;Vec3f normal = model->getNormal(texcoords.x, texcoords.y);float I = std::max(0.f, normal * light_dir);color = model->getDiffuseColor(texcoords.x, texcoords.y) * I;return false;}
};

在这里插入图片描述
切线空间的法线贴图使用,重点求出tbn矩阵,将切线空间的法线转化到世界空间中
tbn矩阵
tbn矩阵
tbn矩阵
当tbn矩阵的n是模型空间时,法线贴图取值经过tbn变换后是模型空间法线
当tbn矩阵的n是世界空间时,法线贴图取值经过tbn变换后是世界空间法线

对于三角形表面所有点,t切线和b切线都是相同的
在这里插入图片描述
顶点法线与面法线可能不同
面法线只是垂直于面的一条向量,规定了面的正反,而顶点法线才是用于光照信息的处理(建模软件中,顶点法线的最初是的默认情况也并非是面法线的平均,只有当在建模软件中对物体进行了平滑着色后,才会根据面法线平均得到顶点法线)
因此要通过每个顶点的切线找到曲面的法线

struct Shader :public IShader {mat<2, 3, float> uv;Vec3f vp[3];Matrix MVP = rasterizer->getProjection() * rasterizer->getModelView();mat<3, 3, float> n;virtual Vec4f vertex(int iface, int vertIdx) {Vec3f v = model->vert(model->face(iface)[vertIdx]);uv.set_col(vertIdx, model->tverts(model->tface(iface)[vertIdx]));vp[vertIdx] = v;n.set_col(vertIdx, model->nverts(model->nface(iface)[vertIdx]));return MVP * embed<4>(v);}virtual bool fragment(Vec3f barycentricCoordinates, TGAColor& color) {Vec3f N = (n * barycentricCoordinates).normalize();float u1 = uv[0][1] - uv[0][0];float v1 = uv[1][1] - uv[1][0];float u2 = uv[0][2] - uv[0][0];float v2 = uv[1][2] - uv[1][0];Vec3f e1 = vp[1] - vp[0];Vec3f e2 = vp[2] - vp[0];float f = 1.f / (u1 * v2 - u2 * v1);Vec3f T = (e1 * v2 - e2 * v1) * f;T = T - N * (T * N);T.normalize();Vec3f B = cross(N, T).normalize();mat<3, 3, float> TBN;TBN.set_col(0, T);TBN.set_col(1, B);TBN.set_col(2, N);Vec2f texcoords = uv * barycentricCoordinates;Vec3f normal = TBN * model->getNormal(texcoords.x, texcoords.y);float I = std::max(0.f, normal * light_dir);color = model->getDiffuseColor(texcoords.x, texcoords.y) * I;return false;}
};

有一点注意的是,很多文章里的tbn矩阵只到了这步推导公式
在这里插入图片描述
求出了t和b向量后,实际上还要加上N做一次正交化,否则是不保证相互垂直的。最终才是tbn矩阵
在这里插入图片描述
项目跟随练习代码地址

相关文章:

tinyrenderer-切线空间法线贴图

法线贴图 法线贴图分两种&#xff0c;一种是模型空间中的&#xff0c;一种是切线空间中的 模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz&#xff0c;与顶点坐标处于一个空间&#xff0c;图片是五颜六色的。 切线空间中的法线贴图的rgb同样对应xyz&#xff0c;是切线…...

C++的vector使用优化

我们在上一章说了如何使用这个vector动态数组&#xff0c;这章我们说说如何更好的使用它以及它是如何工作的。当你创建一个vector&#xff0c;然后使用push_back添加元素&#xff0c;当当前的vector的内存不够时&#xff0c;会从内存中的旧位置复制到内存中的新位置&#xff0c…...

关于stm32的复用和重映射问题

目录 需求IO口的复用和重映射使用复用复用加重映射 总结参考资料 需求 一开始使用stm32c8t6&#xff0c;想实现pwm输出&#xff0c;但是原电路固定在芯片的引脚PB10和PB11上&#xff0c;查看了下引脚的功能&#xff0c;需要使用到复用功能。让改引脚作为定时器PWM的输出IO口。…...

遍历数组1

package demo; import java.util.ArrayList; public class Arrilist { public static void main(String[] args) { ArrayList<String>listnew ArrayList<>(); list.add("汤神"); list.add("yyx"); list.add("hong go…...

Go语言 一些问题了解

一、读取文件数据&#xff0c;是阻塞还是非阻塞的&#xff1f; 分两种情况&#xff1a;常规读取文件数据&#xff0c;和网络IO读取数据 1. 常规读取文件数据&#xff1a; io.Reader 和 bufio.Reader 是阻塞进行的。 bufio.Reader 提供缓冲的读取操作&#xff0c;意味着数据是…...

C++ Primer 第五版 第15章 面向对象程序设计

面向对象程序设计基于三个基本概念&#xff1a;数据抽象、继承和动态绑定。 继承和动态绑定对编写程序有两方面的影响&#xff1a;一是我们可以更容易地定义与其他类相似但不完全相同的新类&#xff1b;二是在使用这些彼此相似的类编写程序时&#xff0c;我们可以在一定程度上…...

finebi或者finereport发邮件

我们二次开发中&#xff0c;如果想利用产品自带的发邮件的功能&#xff0c;来发送自己的邮件内容。 首先 决策系统中邮件相关信息要配置好之后&#xff1a; 这里配好了发件人&#xff0c;以及默认发件人后&#xff0c; private void sendEmail(String content,String subject)…...

基于聚类和回归分析方法探究蓝莓产量影响因素与预测模型研究

&#x1f31f;欢迎来到 我的博客 —— 探索技术的无限可能&#xff01; &#x1f31f;博客的简介&#xff08;文章目录&#xff09; 目录 背景数据说明数据来源思考 正文数据预处理数据读取数据预览数据处理 相关性分析聚类分析数据处理确定聚类数建立k均值聚类模型 多元线性回…...

【数据结构】从前序与中序遍历,或中序与后序遍历序列,构造二叉树

欢迎浏览高耳机的博客 希望我们彼此都有更好的收获 感谢三连支持&#xff01; 首先&#xff0c;根据先序遍历可以确定根节点E&#xff0c;再在中序遍历中通过E确定左树和右数 &#xff1b; 设立inBegin和inEnd&#xff0c;通过这两个参数的游走&#xff0c;来进行子树的创建&a…...

ARM公司发展历程

Arm从1990年成立前开始&#xff0c;历经漫长岁月树立各项公司里程碑及产品成就&#xff0c;一步步成为全球最普及的运算平台。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; Acorn 时期 1978年&#xff0c;Chris Curry和Hermann Hauser共同创立了Acorn…...

C# :IQueryable IEnumerable

文章目录 1. IEnumerable2. IQueryable3. LINQ to SQL4. IEnumerable & IQueryable4.1 Expression4.2 Provider 1. IEnumerable namespace System.Collections: public interface IEnumerable {public IEnumerator GetEnumerator (); }public interface IEnumerator {pubi…...

三、生成RPM包

文章目录 1、编译生成so、bin 通过此工程编译生成so\bin文件 2、将so\bin打包到rpm中 ###### 1.生成可执行文件、库文件 ######### cmake_minimum_required(VERSION 3.15)project(compute) set(target zls_bin) set(target2 libcompute.so) # 依赖的头文件 include_directori…...

单实例11.2.0.4迁移到11.2.0.4RAC_使用rman异机恢复

保命法则&#xff1a;先备份再操作&#xff0c;磁盘空间紧张无法备份就让满足&#xff0c;给自己留退路。 场景说明&#xff1a; 1.本文档的环境为同平台、不同版本&#xff08;操作系统版本可以不同&#xff0c;数据库版本相同&#xff09;&#xff0c;源机器和目标机器部分…...

MySQL之查询性能优化(二)

查询性能优化 慢查询基础:优化数据访问 查询性能低下最基本的原因是访问的数据太多。某些查询可能不可避免地需要筛选大量数据&#xff0c;但这并不场景。大部分性能低下的查询都可以通过减少访问的数据量的方式进行优化。对于低效的查询&#xff0c;我们发现通过下面两个步骤…...

The Best Toolkit 最好用的工具集

The Best Toolkit 工欲善其事&#xff0c;必先利其器&#xff0c;整理过往工作与生活中遇到的最好的工具软件 PDF合并等 PDF24 Tools PDF查看器 SumatraPDF 可以使用黑色来查看&#xff0c;相对不伤眼睛&#xff0c;也有电子书相关的阅读器 Kindle pdf裁边工具 briss 软件卸载…...

使用C#反射中的MAKEGENERICTYPE函数,来为泛型方法和泛型类指定(泛型的)类型

MakeGenericType 是一个在 C# 中用于创建开放类型的实例的方法。开放类型是一种未绑定类型参数的泛型类型。当你有一个泛型类型定义&#xff0c;并且想要用特定的类型实例化它时&#xff0c;你可以使用 MakeGenericType 方法。 public Type MakeGenericType (params Type[] ty…...

sql注入 (运用sqlmap解题)

注:level参数 使用–batch参数可指定payload测试复杂等级。共有五个级别&#xff0c;从1-5&#xff0c;默认值为1。等级越高&#xff0c;测试的payload越复杂&#xff0c;当使用默认等级注入不出来时&#xff0c;可以尝试使用–level来提高测试等级。 --level 参数决定了 sql…...

HTML5 Canvas 绘图教程二

在本教程中&#xff0c;我们将探讨 canvas 的高级用法&#xff0c;包括复杂的绘图 API、坐标系统和变换操作、平滑动画技术以及复杂应用和游戏开发的实践。 1. 绘图 API 高级方法 1.1 二次贝塞尔曲线 (quadraticCurveTo) 二次贝塞尔曲线需要两个点&#xff1a;一个控制点和一…...

Linux 命令 find 的深度解析与使用

Linux 命令 find 的深度解析与使用 在 Linux 系统中&#xff0c;find 命令是一个功能强大的工具&#xff0c;用于在文件系统中搜索文件或目录。无论是基于文件名、文件类型、文件大小、文件权限&#xff0c;还是基于文件的最后修改时间等&#xff0c;find 命令都能提供灵活的搜…...

字符串操作记录

1 拼接 Concat():拼接字符串 Let stringvalue “hello ”; Let result stringvalue.concat(“world”) Console.log(result) // “hello world” 2 删 Let stringvalue “hello world”Console.log(stringvalue.slice(3)); // ‘lo world’Console.log(stringvalue.subst…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...