当前位置: 首页 > news >正文

让AI给你写代码(9.3):一点改进,支持扩展本地知识库

改进目标,当输入提示问题后,能匹配到本地知识库的需求,然后AI按匹配到的需求给出代码并进行自动测试; 如果无法匹配到本地需求,可以直接输入生成逻辑,再由AI生成,然后支持用户把新需求插入本地库。

改进前的架构参考 让AI给你写代码(9.1):引导AI根据输入的问题,并结合本地知识库的预存需求组成提示模板,生成代码并测试,保存

改进后的架构如下:
在这里插入图片描述
对于代码改进主要是集中在两个地方
1 驱动LLM的上下文模板需要更改:
原来:
CONTEXT_QA_TMPL = “”"
下面的信息({summary_prompt})是否有这个问题({message})有关,
如果你觉得无关请告诉我无法根据提供的上下文回答’{message}'这个问题,简要回答即可,
否则请根据{summary_prompt}对{message}的问题进行回答
“”"

更改为
CONTEXT_QA_TMPL = “”"
下面的信息({summary_prompt})是否有这个问题({message})有关,
如果你觉得无关请告诉我无法根据提供的上下文回答’{message}'这个问题,先回答与上下文无关,再按{message}回答这个问题
否则请根据{summary_prompt}对{message}的问题进行回答
“”“”
希望达成目标,如果匹配本地库失败,LLM不仅仅简单的回复“无关”,而是可以根据输入的内容直接让AI生成代码

2 增加一个插入本地知识库的函数工具

#自定义切分
class Document:def __init__(self, text):self.page_content = textself.metadata = {'source': 'Own'}def insertKnowledge(self, text: str):# 询问用户是否需要将代码插入知识库while True:insert_knowledge = input("是否需要将代码插入知识库?(y/n): ")if insert_knowledge == "y" or insert_knowledge == "Y":msg = text.split("```python...```")[0] + "```python...```"split_docs=[Document(msg)]# 插入知识库db = ElasticVectorSearch.from_documents(split_docs,self.embeddings,elasticsearch_url="http://localhost:9200",index_name=my_index)print(db.client.info())print("需求插入知识库成功")breakelse:print("不插入知识库")break...#主程序修改while True:try:user_input = input("请输入您的问题:")similarDocs = local_db.searchKnowledge(user_input)summary_prompt = "".join([doc.page_content for doc in similarDocs])  # 找到最接近的描述docraw_code = assistant.genCode(user_input, summary_prompt)# print('answer::', llm(prompt))print('raw_code::', raw_code)print('\n')#执行程序result = assistant.py_repl_tool_list(raw_code)print('result::', result)print('\n')#储存需求到本地库(新增)local_db.insertKnowledge(user_input)print('本轮处理完毕'+'\n')except KeyboardInterrupt:break

测试: 我们新增一个计算均线的功能,还是用aksahre库,计算A股股票过去M个交易日N天均线
直接看过程
执行前的本地知识库,一共五个需求docs:
在这里插入图片描述
执行过程
请输入您的问题:计算A股股票过去M个交易日N天均线,可以使用akshare库,按按股票代码(stock_code),前复权(qfq),使用stock_zh_a_hist(symbol=stock_code,adjust=“qfq”)接口,获得该股票历史行情,然后根据收盘价(属性为"收盘")计算N天均线,计算结果在历史行情的dataframe新增一列,然后获取最近M个交易日的数据作为返回结果,并用print打印,代码格式为python..., 请以600029为例计算过去200个交易日内60天均线

(预期,与本地知识库匹配无关)

raw_code:: 与上下文无关。

接下来,我将直接回答关于计算A股股票过去M个交易日N天均线的问题。以600029为例,计算过去200个交易日内60天均线的Python代码如下:

import akshare as ak
import pandas as pd
from datetime import datetime, timedelta# 设置股票代码
stock_code = "600029"
# 设置回溯的交易日数量
M = 200
# 设置均线周期
N = 60# 获取股票历史行情数据,前复权
hist_data = ak.stock_zh_a_hist(symbol=stock_code, adjust="qfq")
# 确保数据按日期升序排列
hist_data = hist_data.sort_values(by='日期')# 计算N天均线
hist_data['MA{}'.format(N)] = hist_data['收盘'].rolling(window=N).mean()# 获取最近M个交易日的数据
end_date = hist_data.iloc[-1]['日期']
start_date = end_date - timedelta(days=M)
recent_data = hist_data[(hist_data['日期'] >= start_date) & (hist_data['日期'] <= end_date)]# 打印结果
print(recent_data[['日期', '收盘', 'MA{}'.format(N)]])

这段代码首先导入了必要的库,并设置了股票代码、需要回溯的交易日数M以及均线周期N。接着,它调用了akshare库的stock_zh_a_hist接口来获取股票的历史行情数据,并对其进行前复权处理。之后,计算了N天的移动平均线并在DataFrame中新增了一列。最后,筛选出了最近M个交易日的数据并打印出来,其中包括日期、收盘价以及计算出的N天均线值。
执行成功:

raw_file_name:: “China_Stock_Analysis.py”

file_name:: China_Stock_Analysis.py

文件保存成功

result:: {0: ’ 日期 收盘 MA60\n4830 2023-11-13 5.97 6.202000\n4831 2023-11-14 5.97 6.186333\n4832 2023-11-15 6.02 6.172833\n4833 2023-11-16 6.06 6.161500\n4834 2023-11-17 6.13 6.150833\n… … … …\n4958 2024-05-27 5.98 5.695833\n4959 2024-05-28 5.92 5.695000\n4960 2024-05-29 5.92 5.695500\n4961 2024-05-30 5.90 5.695167\n4962 2024-05-31 5.88 5.698000\n\n[133 rows x 3 columns]\n’}

是否需要将代码插入知识库?(y/n): y
{‘name’: ‘node-1’, ‘cluster_name’: ‘elasticsearch’, ‘cluster_uuid’: ‘F6X7HlMMS-eYJlzY8Tg3Mw’, ‘version’: {‘number’: ‘7.9.2’, ‘build_flavor’: ‘default’, ‘build_type’: ‘tar’, ‘build_hash’: ‘d34da0ea4a966c4e49417f2da2f244e3e97b4e6e’, ‘build_date’: ‘2020-09-23T00:45:33.626720Z’, ‘build_snapshot’: False, ‘lucene_version’: ‘8.6.2’, ‘minimum_wire_compatibility_version’: ‘6.8.0’, ‘minimum_index_compatibility_version’: ‘6.0.0-beta1’}, ‘tagline’: ‘You Know, for Search’}
需求插入知识库成功
本轮处理完毕

执行完成后的本地知识库

在这里插入图片描述
增加成功

总结: 经过改进之后,既可以通过匹配本地知识库生成代码,也可以新增需求后丰富本地知识库

相关文章:

让AI给你写代码(9.3):一点改进,支持扩展本地知识库

改进目标&#xff0c;当输入提示问题后&#xff0c;能匹配到本地知识库的需求&#xff0c;然后AI按匹配到的需求给出代码并进行自动测试&#xff1b; 如果无法匹配到本地需求&#xff0c;可以直接输入生成逻辑&#xff0c;再由AI生成&#xff0c;然后支持用户把新需求插入本地库…...

探索煤化工厂巡检机器人的功能、应用及前景

大家都知道、煤化工厂是以煤为原料生产化工产品的工厂&#xff0c;存在易燃易爆、高温、中毒等隐患等。因此&#xff0c;对煤化工厂进行巡检是非常必要的。巡检旨在是定时对厂内设备运行异常、泄漏等问题&#xff0c;并及时进行处理&#xff0c;保障工作场所的安全。除了以上存…...

【活动】GPT-4O:AI语言生成技术的新里程碑

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 GPT-4O&#xff1a;AI语言生成技术的新里程碑引言GPT系列简史回顾GPT-1: 初露锋…...

实验笔记之——DPVO(Deep Patch Visual Odometry)

本博文记录本文测试DPVO的过程&#xff0c;本博文仅供本人学习记录用~ 《Deep Patch Visual Odometry》 代码链接&#xff1a;GitHub - princeton-vl/DPVO: Deep Patch Visual Odometry 目录 配置过程 测试记录 参考资料 配置过程 首先下载代码以及创建conda环境 git clo…...

力扣----轮转数组

题目链接&#xff1a;189. 轮转数组 - 力扣&#xff08;LeetCode&#xff09; 思路一 我们可以在进行每次轮转的时候&#xff0c;先将数组的最后一个数据的值存储起来&#xff0c;接着将数组中前n-1个数据依次向后移&#xff0c;最后将存储起来的值赋给数组中的第一个数据。 …...

哥斯拉、冰蝎、中国蚁剑在护网中流量特征分析,收藏起来当资料吧,24年护网用得上

护网哥斯拉、冰蝎、中国蚁剑流量分析 【点击免费领取】CSDN大礼包&#xff1a;《黑客&网络安全入门&进阶学习资源包》&#x1f517;包含了应急响应工具、入侵排查、日志分析、权限维持、Windows应急实战、Linux应急实战、Web应急实战。 护网中最担心的是木马已经到了服…...

隐藏饼图的legend,重写legend列表。

因为要实现的饼图效果较复杂,所以,需要重新写列表。 点击右侧列表的圆点,实现隐藏左侧饼图相应环状。 <template><div class="index_div"><a-spin :spinning="aLoading"><scalescreen:width="1920":height="1080&…...

解决在Mac下使用npm报错:Error: EACCES: permission denied

原因说明&#xff1a;没有足够的权限在 /usr/local/lib/node_modules 目录下创建文件夹 这个错误表明你在安装或更新 Vue.js&#xff08;vue&#xff09;包时&#xff0c;没有足够的权限在 /usr/local/lib/node_modules 目录下创建文件夹。这通常是因为默认情况下&#xff0c;普…...

pvt对net delay的影响

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 有星球成员提问: pt中在同一个corner下的net的为啥在min和max的情况下读RC值是不一样的呢??不应该都是根据spef来的吗?? 回答: 这个其实是个误区,相同RC corner情况下我们看report_delay_…...

力扣5 最长回文子串

给你一个字符串 s&#xff0c;找到 s 中最长的 回文子串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 解释&#xff1a;"aba" 同样是符合题意的答案。示例 2&#xff1a; 输入&#xff1a;s "cbbd" 输…...

【Uniapp小程序】自定义导航栏uni-nav-bar滚动渐变色

效果图 新建activityScrollTop.js作为mixins export default {data() {return {navBgColor: "rgba(0,0,0,0)", // 初始背景颜色为完全透明navTextColor: "rgba(0,0,0,1)", // 初始文字颜色};},onPageScroll(e) {// 设置背景const newAlpha Math.min((e.s…...

HarmonyOS鸿蒙学习笔记(25)相对布局 RelativeContainer详细说明

RelativeContainer 简介 前言核心概念官方实例官方实例改造蓝色方块改造center 属性说明参考资料 前言 RelativeContainer是鸿蒙的相对布局组件&#xff0c;它的布局很灵活&#xff0c;可以很方便的控制各个子UI 组件的相对位置&#xff0c;其布局理念有点类似于android的约束…...

自然语言处理学习中英文翻译语料库

在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;学习中英文翻译需要高质量的双语语料库。以下是一些常用的中英文翻译语料库资源&#xff1a; OpenSubtitles&#xff1a; 网站&#xff1a; OpenSubtitles 描述&#xff1a;OpenSubtitles 提供了大量的电影和电视剧…...

可视化数据科学平台在信贷领域应用系列二:数据清洗

上一篇文章中&#xff0c;某互联网银行零售信贷风险建模专家使用数据科学平台Altair RapidMiner——完成了数据探索工作&#xff0c;《可视化数据科学平台在信贷领域应用系列一&#xff1a;数据探索》。本次这位建模专家再次和大家分享数据准备的第二步骤&#xff0c;数据清洗。…...

JS面试题:hash和history的区别

一、hash 模式和 history 模式的介绍 由于 Vue 项目为单页面应用&#xff0c;所以整个项目在开发和构建过程中&#xff0c;仅存在一个HTML物理文件。通过路由系统可以实现将项目的组件与可访问的URL路径进行绑定。由于Vue项目只有一个HTML物理文件&#xff0c;切换页面时既需要…...

GEE案例——归一化差异水体指数丰水期、枯水期的水域面积和水深分析(青海湖为例)

简介 水深反演是指利用遥感技术从航空或卫星平台上获取的数据来推断水体的深度信息。这种技术在海洋学、湖泊和河流的科学研究与管理中非常重要。以下是几种常用的水深反演方法: 1. **光学遥感反演**: - 基于水体颜色和透明度的变化与水深的关系,使用光学遥感影像(如L…...

机器视觉检测--相机

一&#xff0c;相机就是CCD么&#xff1f; 通常&#xff0c;我们把相机都叫作CCD&#xff0c;CCD已经成了相机的代名词。其实很可能正在使用的是CMOS。CCD以及CMOS都称为感光元件&#xff0c;都是将光学图像转换为电子信号的半导体元件。他们在检测光时都采用光电二极管&#…...

【人工智能】第四部分:ChatGPT的技术实现

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…...

小程序配置自定义tabBar及异形tabBar配置操作

什么是tabBar&#xff1f; 小程序的tabbar是指小程序底部的一组固定导航按钮&#xff0c;通常包含2-5个按钮&#xff0c;用于快速切换小程序的不同页面。每个按钮都有一个图标和文本标签&#xff0c;点击按钮可以切换到对应的页面。tabbar通常放置在小程序的底部&#xff0c;以…...

解析《动物园规则怪谈》【逻辑】

鉴赏《动物园规则怪谈》【逻辑】 前言版权推荐鉴赏《动物园规则怪谈》推理游客正方“它”方其他物品 不同规则或纸条的对比联系出现的地方及联系游客入园历程&#xff1a;被“它”污染的过程鉴赏升华 最后 前言 2024-5-31 13:05:38 以下内容源自《【逻辑】》 仅供学习交流使用…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

Java中HashMap底层原理深度解析:从数据结构到红黑树优化

一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一&#xff0c;是基于哈希表的Map接口非同步实现。它允许使用null键和null值&#xff08;但只能有一个null键&#xff09;&#xff0c;并且不保证映射顺序的恒久不变。与Hashtable相比&#xff0c;Hash…...