让AI给你写代码(9.3):一点改进,支持扩展本地知识库
改进目标,当输入提示问题后,能匹配到本地知识库的需求,然后AI按匹配到的需求给出代码并进行自动测试; 如果无法匹配到本地需求,可以直接输入生成逻辑,再由AI生成,然后支持用户把新需求插入本地库。
改进前的架构参考 让AI给你写代码(9.1):引导AI根据输入的问题,并结合本地知识库的预存需求组成提示模板,生成代码并测试,保存
改进后的架构如下:
对于代码改进主要是集中在两个地方
1 驱动LLM的上下文模板需要更改:
原来:
CONTEXT_QA_TMPL = “”"
下面的信息({summary_prompt})是否有这个问题({message})有关,
如果你觉得无关请告诉我无法根据提供的上下文回答’{message}'这个问题,简要回答即可,
否则请根据{summary_prompt}对{message}的问题进行回答
“”"
更改为
CONTEXT_QA_TMPL = “”"
下面的信息({summary_prompt})是否有这个问题({message})有关,
如果你觉得无关请告诉我无法根据提供的上下文回答’{message}'这个问题,先回答与上下文无关,再按{message}回答这个问题
否则请根据{summary_prompt}对{message}的问题进行回答
“”“”
希望达成目标,如果匹配本地库失败,LLM不仅仅简单的回复“无关”,而是可以根据输入的内容直接让AI生成代码
2 增加一个插入本地知识库的函数工具
#自定义切分
class Document:def __init__(self, text):self.page_content = textself.metadata = {'source': 'Own'}def insertKnowledge(self, text: str):# 询问用户是否需要将代码插入知识库while True:insert_knowledge = input("是否需要将代码插入知识库?(y/n): ")if insert_knowledge == "y" or insert_knowledge == "Y":msg = text.split("```python...```")[0] + "```python...```"split_docs=[Document(msg)]# 插入知识库db = ElasticVectorSearch.from_documents(split_docs,self.embeddings,elasticsearch_url="http://localhost:9200",index_name=my_index)print(db.client.info())print("需求插入知识库成功")breakelse:print("不插入知识库")break...#主程序修改while True:try:user_input = input("请输入您的问题:")similarDocs = local_db.searchKnowledge(user_input)summary_prompt = "".join([doc.page_content for doc in similarDocs]) # 找到最接近的描述docraw_code = assistant.genCode(user_input, summary_prompt)# print('answer::', llm(prompt))print('raw_code::', raw_code)print('\n')#执行程序result = assistant.py_repl_tool_list(raw_code)print('result::', result)print('\n')#储存需求到本地库(新增)local_db.insertKnowledge(user_input)print('本轮处理完毕'+'\n')except KeyboardInterrupt:break
测试: 我们新增一个计算均线的功能,还是用aksahre库,计算A股股票过去M个交易日N天均线
直接看过程
执行前的本地知识库,一共五个需求docs:
执行过程
请输入您的问题:计算A股股票过去M个交易日N天均线,可以使用akshare库,按按股票代码(stock_code),前复权(qfq),使用stock_zh_a_hist(symbol=stock_code,adjust=“qfq”)接口,获得该股票历史行情,然后根据收盘价(属性为"收盘")计算N天均线,计算结果在历史行情的dataframe新增一列,然后获取最近M个交易日的数据作为返回结果,并用print打印,代码格式为python...
, 请以600029为例计算过去200个交易日内60天均线
(预期,与本地知识库匹配无关)
raw_code:: 与上下文无关。
接下来,我将直接回答关于计算A股股票过去M个交易日N天均线的问题。以600029为例,计算过去200个交易日内60天均线的Python代码如下:
import akshare as ak
import pandas as pd
from datetime import datetime, timedelta# 设置股票代码
stock_code = "600029"
# 设置回溯的交易日数量
M = 200
# 设置均线周期
N = 60# 获取股票历史行情数据,前复权
hist_data = ak.stock_zh_a_hist(symbol=stock_code, adjust="qfq")
# 确保数据按日期升序排列
hist_data = hist_data.sort_values(by='日期')# 计算N天均线
hist_data['MA{}'.format(N)] = hist_data['收盘'].rolling(window=N).mean()# 获取最近M个交易日的数据
end_date = hist_data.iloc[-1]['日期']
start_date = end_date - timedelta(days=M)
recent_data = hist_data[(hist_data['日期'] >= start_date) & (hist_data['日期'] <= end_date)]# 打印结果
print(recent_data[['日期', '收盘', 'MA{}'.format(N)]])
这段代码首先导入了必要的库,并设置了股票代码、需要回溯的交易日数M以及均线周期N。接着,它调用了akshare
库的stock_zh_a_hist
接口来获取股票的历史行情数据,并对其进行前复权处理。之后,计算了N天的移动平均线并在DataFrame中新增了一列。最后,筛选出了最近M个交易日的数据并打印出来,其中包括日期、收盘价以及计算出的N天均线值。
执行成功:
raw_file_name:: “China_Stock_Analysis.py”
file_name:: China_Stock_Analysis.py
文件保存成功
result:: {0: ’ 日期 收盘 MA60\n4830 2023-11-13 5.97 6.202000\n4831 2023-11-14 5.97 6.186333\n4832 2023-11-15 6.02 6.172833\n4833 2023-11-16 6.06 6.161500\n4834 2023-11-17 6.13 6.150833\n… … … …\n4958 2024-05-27 5.98 5.695833\n4959 2024-05-28 5.92 5.695000\n4960 2024-05-29 5.92 5.695500\n4961 2024-05-30 5.90 5.695167\n4962 2024-05-31 5.88 5.698000\n\n[133 rows x 3 columns]\n’}
是否需要将代码插入知识库?(y/n): y
{‘name’: ‘node-1’, ‘cluster_name’: ‘elasticsearch’, ‘cluster_uuid’: ‘F6X7HlMMS-eYJlzY8Tg3Mw’, ‘version’: {‘number’: ‘7.9.2’, ‘build_flavor’: ‘default’, ‘build_type’: ‘tar’, ‘build_hash’: ‘d34da0ea4a966c4e49417f2da2f244e3e97b4e6e’, ‘build_date’: ‘2020-09-23T00:45:33.626720Z’, ‘build_snapshot’: False, ‘lucene_version’: ‘8.6.2’, ‘minimum_wire_compatibility_version’: ‘6.8.0’, ‘minimum_index_compatibility_version’: ‘6.0.0-beta1’}, ‘tagline’: ‘You Know, for Search’}
需求插入知识库成功
本轮处理完毕
执行完成后的本地知识库
增加成功
总结: 经过改进之后,既可以通过匹配本地知识库生成代码,也可以新增需求后丰富本地知识库
相关文章:

让AI给你写代码(9.3):一点改进,支持扩展本地知识库
改进目标,当输入提示问题后,能匹配到本地知识库的需求,然后AI按匹配到的需求给出代码并进行自动测试; 如果无法匹配到本地需求,可以直接输入生成逻辑,再由AI生成,然后支持用户把新需求插入本地库…...

探索煤化工厂巡检机器人的功能、应用及前景
大家都知道、煤化工厂是以煤为原料生产化工产品的工厂,存在易燃易爆、高温、中毒等隐患等。因此,对煤化工厂进行巡检是非常必要的。巡检旨在是定时对厂内设备运行异常、泄漏等问题,并及时进行处理,保障工作场所的安全。除了以上存…...

【活动】GPT-4O:AI语言生成技术的新里程碑
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 GPT-4O:AI语言生成技术的新里程碑引言GPT系列简史回顾GPT-1: 初露锋…...

实验笔记之——DPVO(Deep Patch Visual Odometry)
本博文记录本文测试DPVO的过程,本博文仅供本人学习记录用~ 《Deep Patch Visual Odometry》 代码链接:GitHub - princeton-vl/DPVO: Deep Patch Visual Odometry 目录 配置过程 测试记录 参考资料 配置过程 首先下载代码以及创建conda环境 git clo…...

力扣----轮转数组
题目链接:189. 轮转数组 - 力扣(LeetCode) 思路一 我们可以在进行每次轮转的时候,先将数组的最后一个数据的值存储起来,接着将数组中前n-1个数据依次向后移,最后将存储起来的值赋给数组中的第一个数据。 …...

哥斯拉、冰蝎、中国蚁剑在护网中流量特征分析,收藏起来当资料吧,24年护网用得上
护网哥斯拉、冰蝎、中国蚁剑流量分析 【点击免费领取】CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》🔗包含了应急响应工具、入侵排查、日志分析、权限维持、Windows应急实战、Linux应急实战、Web应急实战。 护网中最担心的是木马已经到了服…...

隐藏饼图的legend,重写legend列表。
因为要实现的饼图效果较复杂,所以,需要重新写列表。 点击右侧列表的圆点,实现隐藏左侧饼图相应环状。 <template><div class="index_div"><a-spin :spinning="aLoading"><scalescreen:width="1920":height="1080&…...
解决在Mac下使用npm报错:Error: EACCES: permission denied
原因说明:没有足够的权限在 /usr/local/lib/node_modules 目录下创建文件夹 这个错误表明你在安装或更新 Vue.js(vue)包时,没有足够的权限在 /usr/local/lib/node_modules 目录下创建文件夹。这通常是因为默认情况下,普…...

pvt对net delay的影响
我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 有星球成员提问: pt中在同一个corner下的net的为啥在min和max的情况下读RC值是不一样的呢??不应该都是根据spef来的吗?? 回答: 这个其实是个误区,相同RC corner情况下我们看report_delay_…...
力扣5 最长回文子串
给你一个字符串 s,找到 s 中最长的 回文子串。 示例 1: 输入:s "babad" 输出:"bab" 解释:"aba" 同样是符合题意的答案。示例 2: 输入:s "cbbd" 输…...

【Uniapp小程序】自定义导航栏uni-nav-bar滚动渐变色
效果图 新建activityScrollTop.js作为mixins export default {data() {return {navBgColor: "rgba(0,0,0,0)", // 初始背景颜色为完全透明navTextColor: "rgba(0,0,0,1)", // 初始文字颜色};},onPageScroll(e) {// 设置背景const newAlpha Math.min((e.s…...

HarmonyOS鸿蒙学习笔记(25)相对布局 RelativeContainer详细说明
RelativeContainer 简介 前言核心概念官方实例官方实例改造蓝色方块改造center 属性说明参考资料 前言 RelativeContainer是鸿蒙的相对布局组件,它的布局很灵活,可以很方便的控制各个子UI 组件的相对位置,其布局理念有点类似于android的约束…...
自然语言处理学习中英文翻译语料库
在自然语言处理(NLP)领域,学习中英文翻译需要高质量的双语语料库。以下是一些常用的中英文翻译语料库资源: OpenSubtitles: 网站: OpenSubtitles 描述:OpenSubtitles 提供了大量的电影和电视剧…...

可视化数据科学平台在信贷领域应用系列二:数据清洗
上一篇文章中,某互联网银行零售信贷风险建模专家使用数据科学平台Altair RapidMiner——完成了数据探索工作,《可视化数据科学平台在信贷领域应用系列一:数据探索》。本次这位建模专家再次和大家分享数据准备的第二步骤,数据清洗。…...

JS面试题:hash和history的区别
一、hash 模式和 history 模式的介绍 由于 Vue 项目为单页面应用,所以整个项目在开发和构建过程中,仅存在一个HTML物理文件。通过路由系统可以实现将项目的组件与可访问的URL路径进行绑定。由于Vue项目只有一个HTML物理文件,切换页面时既需要…...
GEE案例——归一化差异水体指数丰水期、枯水期的水域面积和水深分析(青海湖为例)
简介 水深反演是指利用遥感技术从航空或卫星平台上获取的数据来推断水体的深度信息。这种技术在海洋学、湖泊和河流的科学研究与管理中非常重要。以下是几种常用的水深反演方法: 1. **光学遥感反演**: - 基于水体颜色和透明度的变化与水深的关系,使用光学遥感影像(如L…...

机器视觉检测--相机
一,相机就是CCD么? 通常,我们把相机都叫作CCD,CCD已经成了相机的代名词。其实很可能正在使用的是CMOS。CCD以及CMOS都称为感光元件,都是将光学图像转换为电子信号的半导体元件。他们在检测光时都采用光电二极管&#…...

【人工智能】第四部分:ChatGPT的技术实现
人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…...

小程序配置自定义tabBar及异形tabBar配置操作
什么是tabBar? 小程序的tabbar是指小程序底部的一组固定导航按钮,通常包含2-5个按钮,用于快速切换小程序的不同页面。每个按钮都有一个图标和文本标签,点击按钮可以切换到对应的页面。tabbar通常放置在小程序的底部,以…...
解析《动物园规则怪谈》【逻辑】
鉴赏《动物园规则怪谈》【逻辑】 前言版权推荐鉴赏《动物园规则怪谈》推理游客正方“它”方其他物品 不同规则或纸条的对比联系出现的地方及联系游客入园历程:被“它”污染的过程鉴赏升华 最后 前言 2024-5-31 13:05:38 以下内容源自《【逻辑】》 仅供学习交流使用…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...