当前位置: 首页 > news >正文

新手教程之使用LLaMa-Factory微调LLaMa3

文章目录

  • 为什么要用LLaMa-Factory
  • 什么是LLaMa-Factory
  • LLaMa-Factory环境搭建
  • 微调LLaMA3
  • 参考博文

为什么要用LLaMa-Factory

如果你尝试过微调大模型,你就会知道,大模型的环境配置是非常繁琐的,需要安装大量的第三方库和依赖,甚至需要接入一些框架。
但是大模型微调的方法又是非常类似的,那有没有一种工具可以统一这些操作,让大模型微调变成一个简单易上手的事情,LLaMa-Factory就是为了解决这个问题应运而生


什么是LLaMa-Factory

本来不想说这么多废话的,想来想去还是简单介绍一下,也加深自己的了解:
LLaMA Factory是一款支持多种LLM微调方式的工具,包括预训练、指令监督微调和奖励模型训练等。它支持LoRA和QLoRA微调策略,广泛集成了业界前沿的微调方法。特点在于支持多种LLM模型,提供了WebUI页面,使非开发人员也能方便进行微调工作。
代码地址:LLaMA-Factory


LLaMa-Factory环境搭建

  1. 克隆项目
git clone https://github.com/hiyouga/LLaMA-Factory.git
  1. 创建环境
conda create -n llama_factory python=3.10
conda activate llama_factory
  1. 安装依赖
cd LLaMA-Factory
pip install -e .[torch,metrics]
  1. 启动web UI界面
export CUDA_VISIBLE_DEVICES=0
python src/webui.py

启动成功之后,游览器会打开如下界面:
在这里插入图片描述


微调LLaMA3

  1. 准备模型

方法一:克隆我们要微调的模型到本地,然后将在web UI界面填入我们的模型名称和本地的模型地址

git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

方法二:直接去魔塔Meta-Llama-3-8B-Instruct地址复制对应的文件名和路径,微调时,程序会自动​去魔搭下载模型!
(这个方法小编浅浅试了一下,没成功,还是下载到本地靠谱)
在这里插入图片描述

  1. 准备数据集

LLaMA-Factory项目内置了丰富的数据集,统一存储于data目录下。
如果你想基于自己的数据集微调,你需要
(1)将你的数据集也放到data目录下
注意:你需要将你的数据集改为一样的格式,具体可参考data下内置数据集的格式
这里提供一个小编基于LooksJuicy/ruozhiba数据集改好的一个数据集:

https://pan.baidu.com/s/1FYYlBIXWy697xdagrHiIeg
提取码:2333

(2)修改data下的dataset_info.json文件,添加如下内容:
其中my_data.json是我自己的数据集文件,my_data是对应的数据集文件名

"my_data": {"file_name": "my_data.json"},

添加到第一层大括号内的第一个元素前,也就是identity前面

  1. 微调

这里我直接通过web ui界面进行微调
在这里插入图片描述

训练需要二十分钟左右,训练完成之后,会出现下述界面:
左下角会显示训练完毕,右边会出现训练过程中损失变化的一个可视化

在这里插入图片描述

  1. 与微调之后的模型对话

在这里插入图片描述
这样看来,使用LLaMa-Factory微调确实很简单方便!!!


参考博文

  • 在Ubuntu上安装部署LLaMA-Factory,及微调大模型测试
  • 使用LLaMA Factory微调LlaMA 3模型
  • llama3 微调教程之 llama factory 的 安装部署与模型微调过程,模型量化和gguf转换
  • 动手微调Llama3!纯本地+手把手!ORPO偏好微调,数据集工具指南!base到chat模型微调方案!day01
  • Llama3 中文版模型微调笔记,小白也能学会

相关文章:

新手教程之使用LLaMa-Factory微调LLaMa3

文章目录 为什么要用LLaMa-Factory什么是LLaMa-FactoryLLaMa-Factory环境搭建微调LLaMA3参考博文 为什么要用LLaMa-Factory 如果你尝试过微调大模型,你就会知道,大模型的环境配置是非常繁琐的,需要安装大量的第三方库和依赖,甚至…...

Java函数笔记

1. Statement.executeQuery 和 Statement.executeUpdate 作用: 用于执行SQL查询和更新操作。 问题: 容易导致SQL注入攻击。 解决方法: 使用PreparedStatement进行参数化查询。 // 不安全的做法 Statement stmt connection.createStat…...

Maven实战: 从工程创建自定义archetype

在上一节中(创建自定义archetype)我们手动创建了一个项目模板,经过5步能创建出一个项目模板,如果我有一个现成的项目,想用这个项目作为模板来生成其他项目呢?Maven提供了基于项目生成archetype模板的能力,我们分3步来讲…...

初识JAVA中的包装类,时间复杂度及空间复杂度

目录: 一.包装类 二.时间复杂度 三.空间复杂度 一.包装类: 在Java中,由于基本类型不是继承自Object,为了在泛型代码中可以支持基本类型,Java 给每个基本类型都对应了一个包装类型。 1 基本数据类型和对应的包装类 &am…...

RapidMiner如何利用Hugging Face中的模型实现更有趣的事

RapidMiner Studio最新发布的功能更新,重点是嵌入Hugging Face和Open AI,Hugging face中含有大量的可用模型,包含翻译、总结、文本生成等等强大的模型,Open AI更不必说了,生成界的鼻祖。那么今天主要介绍一下RapidMine…...

Vue3 自定义Hooks函数的封装

1、如何理解vue3中的自定义hooks 在Vue 3中,自定义hooks允许开发者封装和重用逻辑代码。自定义hooks是使用Composition API时创建的函数,这些函数可以包含任意的组合逻辑,并且可以在多个组件之间共享。 自定义hooks通常遵循这样的命名约定&…...

python的DataFrame和Series

Series、DataFrame 创建 pd.Series() pd.DataFrame() # 字典{列名:[值1,值2],} [[]] [()] numpy Pandas的底层的数据结构,就是numpy的数组 ndarray 常用属性 shape (行数,) (行数,列数) values → ndarray index 索引名 siz…...

ARP欺骗的原理与详细步骤

ARP是什么: 我还记得在计算机网络课程当中,学过ARP协议,ARP是地址转换协议,是链路层的协议,是硬件与上层之间的接口,同时对上层提供服务。在局域网中主机与主机之间不能直接通过IP地址进行通信&#xff0c…...

25、DHCP FTP

DHCP 动态主机配置协议 DHCP定义: 服务器配置好了地址池 192.168.233.10 192.168.233.20 客户端从地址池当中随机获取一个ip地址,ip地址会发生变化,使用服务端提供的ip地址,时间限制,重启之后也会更换。 DHCP优点&a…...

spark学习记录-spark基础概念

背景需求 公司有项目需要将大容量数据进行迁移,经过讨论,采用spark框架进行同步、转换、解析、入库。故此,这里学习spark的一些基本的概念知识。 Apache Spark 是一个开源的大数据处理框架,可以用于高效地处理和分析大规模的数据…...

BGP数据包+工作过程

BGP数据包 基于 TCP的179端口工作;故BGP协议中所有的数据包均需要在tcp 会话建立后; 基于TCP的会话来进行传输及可靠性的保障; 首先通过TCP的三次握手来寻找到邻居; Open 仅负责邻居关系的建立,正常进收发一次即可;携带route-id; Keepli…...

【C语言】详解函数(庖丁解牛版)

文章目录 1. 前言2. 函数的概念3.库函数3.1 标准库和头文件3.2 库函数的使用3.2.1 头文件的包含3.2.2 实践 4. 自定义函数4.1 自定义函数的语法形式4.2 函数的举例 5. 形参和实参5.1 实参5.2 形参5.3 实参和形参的关系 6. return 语句6. 总结 1. 前言 一讲到函数这块&#xff…...

createAsyncThunk完整用法介绍

createAsyncThunk 是 Redux Toolkit 库中的一个功能,它用于创建处理异步逻辑的 thunk action creator。Redux Toolkit 是一个官方推荐的库,用于简化 Redux 开发过程,特别是处理常见的 Redux 模式,如异步数据流。createAsyncThunk …...

[书生·浦语大模型实战营]——第六节 Lagent AgentLego 智能体应用搭建

1. 概述和前期准备 1.1 Lagent是什么 Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。 Lagent 目前已经支持了包括 AutoGPT、ReAct 等在内的多个经典智能体范式&#x…...

Word文档如何设置限制编辑和解除限制编辑操作

Word文档是大家经常使用的一款办公软件,但是有些文件内容可能需要进行加密保护,不过大家可能也不需要对word文件设置打开密码。只是需要限制一下编辑操作就可以了。今天和大家分享,如何对word文件设置编辑限制、以及如何取消word文档的编辑限…...

IO进程线程(六)进程

文章目录 一、进程状态(二)进程状态切换实例1. 实例1 二、进程的创建(一)原理(二)fork函数--创建进程1. 定义2. 不关注返回值3. 关注返回值 (三) 父子进程的执行顺序(四&…...

机器视觉——找到物块中心点

首先先介绍一下我用的是HALCON中的HDevelop软件。 大家下载好软件后可以测试一下: 在程序编辑器窗口中输入下面指令: read_image(Image,monkey) 那么如果出现这样的图片,说明是没有问题的 那么本次编程采用的是下面这张图片 我们要达到的…...

重磅消息! Stable Diffusion 3将于6月12日开源 2B 版本的模型,文中附候补注册链接。

在OpenAI发布Sora后,Stability AI也发布了其最新的模型Stabled Diffusion3, 之前的文章中已经和大家介绍过,感兴趣的小伙伴可以点击以下链接阅读。Sora是音视频方向,Stabled Diffusion3是图像生成方向,那么两者没有必然的联系&…...

Python报错:AttributeError: <unknown>.DeliveryStore 获取Outlook邮箱时报错

目录 报错提示&#xff1a; 现象描述 代码解释&#xff1a; 原因分析&#xff1a; 报错提示&#xff1a; in get_outlook_email return account.DeliveryStore.DisplayName line 106, in <module> email_address get_outlook_email() 现象描述 获取outlook本地邮箱…...

如何 Logrus IT 的质量评估门户帮助提升在线商店前端(案例研究)

在当今竞争激烈的电子商务环境中&#xff0c;一个运作良好的在线店面对商业成功至关重要。然而&#xff0c;确保目标受众获得积极的用户体验可能是一项挑战&#xff0c;尤其是在使用多种语言和平台时。Logrus IT的质量评估门户是一个强大的工具&#xff0c;可帮助企业简化内容和…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...