支持向量机、随机森林、K最近邻和逻辑回归-九五小庞
支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest)、K最近邻(K-Nearest Neighbors, KNN)和逻辑回归(Logistic Regression)是机器学习和统计学习中常用的分类算法。以下是这些算法的简要介绍:
1. 支持向量机(SVM)
原理:
- SVM是一种监督学习算法,主要用于数据分类问题。
- 在高维空间中寻找一个超平面(在二维空间中为一条直线,三维空间中为一个平面)来对训练样本进行划分,使得不同类别的样本尽可能位于超平面的两侧,同时最大化两侧最近点到超平面的距离。
- 这些最近的点被称为支持向量。
特点:
- 对高维数据有效。
- 在数据维度大于样本数时仍表现良好(即小样本学习)。
- 可以使用核函数来处理非线性问题。
2. 随机森林(Random Forest)
原理:
- 随机森林是决策树算法的一种集成学习方法。
- 通过构建多个决策树并汇总它们的预测结果来进行分类或回归。
- 每个决策树基于原始数据集中随机抽取的样本和特征子集进行训练。
特点:
- 准确性高,不易过拟合。
- 可以处理高维数据。
- 可以评估特征的重要性。
- 对缺失值不敏感。
3. K最近邻(KNN)
原理:
- KNN是一种基于实例的学习,或者说是局部逼近和将所有计算推迟到分类之后进行的惰性学习。
- 一个样本的类别由其邻居的类别投票决定,其中邻居是指训练集中与该样本最相似的K个样本。
- 相似度通常通过计算样本之间的欧氏距离或其他距离度量来确定。
特点:
- 原理简单,易于理解。
- 对异常值敏感。
- 计算量大,特别是当数据集很大时。
- 需要选择合适的K值。
4. 逻辑回归(Logistic Regression)
原理:
- 逻辑回归虽然名字中有“回归”,但实际上是一种分类算法。
- 它通过逻辑函数(sigmoid函数)将线性回归模型的输出转换为介于0和1之间的概率值,进而进行二分类或多分类。
特点:
- 计算效率高,易于实现。
- 对分类问题的解释性强。
- 可以直接给出类别的概率。
- 但在处理非线性问题时需要特征转换或核方法。
这些算法各有优缺点,适用于不同的场景和数据集。在实际应用中,需要根据问题的具体需求和数据的特性来选择合适的算法。
相关文章:
支持向量机、随机森林、K最近邻和逻辑回归-九五小庞
支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest)、K最近邻(K-Nearest Neighbors, KNN)和逻辑回归(Logistic Regression)是机器学习和统计学习中常用的分类算法。…...
MySQL—多表查询—多表关系介绍
一、引言 提到查询,我们想到之前学习的单表查询(DQL语句)。而这一章节部分的博客我们将要去学习和了解多表查询。 对于多表查询,主要从以下7个方面进行学习。 (1)第一部分:介绍 1、多表关系 2、…...
Vue基础篇--table的封装
1、 在components文件夹中新建一个ITable的vue文件 <template><div class"tl-rl"><template :table"table"><el-tablev-loading"table.loading":show-summary"table.hasShowSummary":summary-method"table…...
mysql中optimizer trace的作用
大家好。对于MySQL 5.6以及之前的版本来说,查询优化器就像是一个黑盒子一样,我们只能通过EXPLAIN语句查看到最后 优化器决定使用的执行计划,却无法知道它为什么做这个决策。于是在MySQL5.6以及之后的版本中,MySQL新增了一个optimi…...
实习面试题(答案自敲)、
1、为什么要重写equals方法,为什么重写了equals方法后,就必须重写hashcode方法,为什么要有hashcode方法,你能介绍一下hashcode方法吗? equals方法默认是比较内存地址;为了实现内容比较,我们需要…...
二叉树讲解
目录 前言 二叉树的遍历 层序遍历 队列的代码 queuepush和queuepushbujia的区别 判断二叉树是否是完全二叉树 前序 中序 后序 功能展示 创建二叉树 初始化 销毁 简易功能介绍 二叉树节点个数 二叉树叶子节点个数 二叉树第k层节点个数 二叉树查找值为x的节点 判…...
Unity DOTS技术(五)Archetype,Chunk,NativeArray
文章目录 一.Chunk和Archetype什么是Chunk?什么是ArchType 二.Archetype创建1.创建实体2.创建并添加组件3.批量创建 三.多线程数组NativeArray 本次介绍的内容如下: 一.Chunk和Archetype 什么是Chunk? Chunk是一个空间,ECS系统会将相同类型的实体放在Chunk中.当一个Chunk…...
算法学习笔记(7.1)-贪心算法(分数背包问题)
##问题描述 给定 𝑛 个物品,第 𝑖 个物品的重量为 𝑤𝑔𝑡[𝑖−1]、价值为 𝑣𝑎𝑙[𝑖−1] ,和一个容量为 𝑐𝑎&…...
气膜建筑的施工对周边环境影响大吗?—轻空间
随着城市化进程的加快,建筑行业的快速发展也带来了环境问题。噪音、灰尘和建筑废料等对周边居民生活和生态环境造成了不小的影响。因此,选择一种环保高效的施工方式变得尤为重要。气膜建筑作为一种新兴的建筑形式,其施工过程对周边环境的影响…...
【计算机网络】对应用层HTTP协议的重点知识的总结
˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...
30分钟快速入门TCPDump
TCPDump是一款功能强大的网络分析工具,它可以帮助网络管理员捕获并分析流经网络接口的数据包。由于其在命令行环境中的高效性与灵活性,TCPDump成为了网络诊断与安全分析中不可或缺的工具。本文将详细介绍TCPDump的基本用法,并提供一些高级技巧…...
Python | 刷题日记
1.海伦公式求三角形的面积 area根号下(p(p-a)(p-b)(p-c)) p是周长的一半 2.随机生成一个整数 import random xrandom.randint(0,9)#随机生成0到9之间的一个数 yeval(input("please input:")) if xy:print("bingo") elif x<y:pri…...
“JS逆向 | Python爬虫 | 动态cookie如何破~”
案例目标 目标网址:aHR0cHMlM0EvL21hdGNoLnl1YW5yZW54dWUuY29tL21hdGNoLzI= 本题目标:提取全部 5 页发布日热度的值,计算所有值的加和,并提交答案 常规 JavaScript 逆向思路 JavaScript 逆向工程通常分为以下三步: 寻找入口:逆向工程的核心在于找出加密参数的生成方式。…...
十.数据链路层——MAC/ARP
IP和数据链路层之间的关系 引言 在IP一节中,我们说IP层路由(数据转发)的过程,就像我们跳一跳游戏一样,从一个节点,转发到另一个节点 它提供了一种将数据从A主机跨网络发到B主机的能力 什么叫做跨网络??&a…...
Linux主机安全可视化运维(免费方案)
本文介绍如何使用免费的主机安全软件,在自有机房或企业网络实现对Linux系统进行可视化“主机安全”管理。 一、适用对象 本文适用于个人或企业内的Linux服务器运维场景,实现免费、高效、可视化的主机安全管理。提前发现主机存在的安全风险,全方位实时监控主机运行时入侵事…...
Vite + Vue 3 前端项目实战
一、项目创建 npm install -g create-vite #安装 Vite 项目的脚手架工具 # 或者使用yarn yarn global add create-vite#创建vite项目 create-vite my-vite-project二、常用Vue项目依赖安装 npm install unplugin-auto-import unplugin-vue-components[1] 安装按需自动导入组…...
python-字符替换
[题目描述] 给出一个字符串 s 和 q 次操作,每次操作将 s 中的某一个字符a全部替换成字符b,输出 q 次操作后的字符串输入 输入共 q2 行 第一行一个字符串 s 第二行一个正整数 q,表示操作次数 之后 q 行每行“a b”表示把 s 中所有的a替换成b输…...
团队项目开发使用git工作流(IDEA)【精细】
目录 开发项目总体使用git流程 图解流程 1.创建项目仓库[组长完成] 2. 创建项目,并进行绑定远程仓库【组长完成】 3.将项目与远程仓库(gitee)进行绑定 3.1 创建本地的git仓库 3.2 将项目添加到缓存区 3.3 将项目提交到本地仓库&#…...
爬虫案例实战
文章目录 一、窗口切换实战二、京东数据抓取 一、窗口切换实战 案例实战:使用selenium实现打开百度和腾讯两个窗口并切换 知识点:用到selenium中execute_script()执行js代码及switch_to.window()方法 全部代码如下: import time import war…...
uniapp uni-popup内容被隐藏问题
今天开发新需求的时候发现uni-popup 过一会就被隐藏掉只留下遮罩(css被更改了),作者进行了如下调试。 1.讲uni-popup放入其他节点内 失败! 2.在生成dom后在打开 失败! 3.uni-popup将该节点在包裹一层 然后将统计设置样式,v-if v-s…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...
