深入对比:Transformer与LSTM的详细解析
在深度学习和自然语言处理(NLP)领域,Transformer和长短时记忆网络(LSTM)是两个备受瞩目的模型。它们各自拥有独特的优势,并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比,帮助读者更好地理解它们的差异和适用场景。
一、LSTM(长短时记忆网络)
LSTM是一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列时遇到的梯度消失和梯度爆炸问题。LSTM通过引入门控机制(包括输入门、遗忘门和输出门)来控制信息的流动,从而实现对长期依赖关系的有效捕捉。
优点:
- 长期依赖捕捉:LSTM通过门控机制能够有效捕捉序列中的长期依赖关系,特别适用于处理长序列数据。
- 缓解梯度消失/爆炸:门控机制有助于缓解梯度消失和梯度爆炸问题,使LSTM能够更好地处理长序列数据。
缺点:
- 计算复杂度:LSTM在每个时间步都需要进行一系列的门控操作,导致计算复杂度较高。
- 并行化能力:由于LSTM的循环结构,其并行化能力相对较弱,限制了模型的训练速度。
二、Transformer
Transformer是一种基于自注意力机制的模型,它摒弃了RNN的循环结构,完全依赖于自注意力机制来处理序列数据。Transformer在多个NLP任务中都取得了显著的效果,尤其是在机器翻译等任务中。
优点:
- 并行化能力强:Transformer的并行化能力非常强,可以显著提高模型的训练速度。
- 全局信息捕捉:通过自注意力机制,Transformer能够同时关注序列中的所有位置,从而捕捉全局信息。
- 长期依赖捕捉:虽然Transformer没有显式的循环结构,但自注意力机制使其能够捕捉长期依赖关系。
缺点:
- 计算复杂度:Transformer的计算复杂度较高,特别是当序列长度较长时,其计算量会显著增加。
- 位置信息:Transformer本身不包含位置信息,需要通过额外的位置编码来补充。
三、LSTM与Transformer的对比
-
结构差异:
- LSTM:采用循环结构,通过门控机制控制信息的流动。
- Transformer:摒弃了循环结构,完全依赖于自注意力机制。
-
依赖捕捉:
- LSTM:通过门控机制有效捕捉长期依赖关系。
- Transformer:虽然没有显式的循环结构,但自注意力机制使其能够捕捉长期依赖关系。
-
并行化能力:
- LSTM:由于循环结构,其并行化能力相对较弱。
- Transformer:具有很强的并行化能力,可以显著提高模型的训练速度。
-
全局信息捕捉:
- LSTM:由于循环结构,每个时间步只能关注到之前的信息。
- Transformer:通过自注意力机制能够同时关注序列中的所有位置,从而捕捉全局信息。
-
计算复杂度:
- LSTM:在每个时间步都需要进行一系列的门控操作,计算复杂度较高。
- Transformer:当序列长度较长时,其计算量会显著增加。
-
位置信息:
- LSTM:通过循环结构天然地包含了位置信息。
- Transformer:本身不包含位置信息,需要通过额外的位置编码来补充。
总结
LSTM和Transformer各自具有独特的优势,并在不同的任务中发挥着重要作用。LSTM通过门控机制有效捕捉长期依赖关系,适用于处理长序列数据;而Transformer则具有强大的并行化能力和全局信息捕捉能力,适用于处理大规模序列数据。在实际应用中,我们可以根据任务的特点和需求选择合适的模型。例如,在处理长文本或语音等序列数据时,LSTM可能是一个更好的选择;而在处理大规模机器翻译或文本摘要等任务时,Transformer可能更具优势。
相关文章:
深入对比:Transformer与LSTM的详细解析
在深度学习和自然语言处理(NLP)领域,Transformer和长短时记忆网络(LSTM)是两个备受瞩目的模型。它们各自拥有独特的优势,并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比,帮助…...
lsof 命令
lsof(list open files)是一个列出当前系统打开文件的工具。在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...
F5G城市光网,助力“一网通城”筑基数字中国
《淮南子》中说,“临河而羡鱼,不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备,有了合适的工具,牢固的基础,各种难题也会迎刃而解。 如今,数字中国发展建设如火如荼,各项任务…...
Ownips+Coze海外社媒数据分析实战指南
目录 一、引言二、ISP代理简介三、应用实践——基于Ownips和coze的社媒智能分析助手3.1、Twitter趋势数据采集3.1.1、Twitter趋势数据接口分析3.1.2、Ownips原生住宅ISP选取与配置3.1.3、数据采集 3.2、基于Ownips和Coze的社媒智能助手3.2.1、Ownips数据采集插件集成3.2.2、创建…...
C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤
前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…...
厘米级精确定位,开启定位技术新时代
定位技术在当前这个科技发展时代可以说是以以前所未有的速度在发展,其中厘米级精确定位技术更是成为当前的研究热点和实际应用中的佼佼者。这项技术以其高度的精准性和广泛的应用前景,正在逐渐改变我们的生活和工作方式。接下来我们跟着深圳沧穹科技一起…...
docker 存储 网络 命令
文章目录 1 docker存储1.1 目录挂载2.1卷映射2.1.1卷映射和目录挂载的区别2.1.2卷映射的使用 2 docker网络2.1查看docker的默认网络2.2查看容器的IP2.3容器互通2.4自定义网络2.4.1 创建自定义网络2.4.2创建容器的时候加入到自定义的网络2.4.3使用域名进行容器之间的访问2.4.4re…...
【MATLAB源码-第222期】基于matlab的改进蚁群算法三维栅格地图路径规划,加入精英蚁群策略。包括起点终点,障碍物,着火点,楼梯。
操作环境: MATLAB 2022a 1、算法描述 蚁群算法(Ant Colony Optimization,ACO)是一种通过模拟蚂蚁觅食行为的启发式优化算法。它由意大利学者Marco Dorigo在20世纪90年代初提出,最初用于解决旅行商问题(T…...
百度ERNIE系列预训练语言模型浅析(4)-总结篇
总结:ERNIE 3.0与ERNIE 2.0比较 (1)相同点: 采用连续学习 采用了多个语义层级的预训练任务 (2)不同点: ERNIE 3.0 Transformer-XL Encoder(自回归自编码), ERNIE 2.0 Transformer Encode…...
Ubuntu 20.04 LTS配置JDK、Git
一、配置JDK 1.1 更新系统 执行以下命令 sudo apt update 出现以下界面即为安装成功 1.2 安装openjdk-11-jdk Ubuntu20.04中没有默认JDK,执行以下指令安装,默认会自动配置一些必要环境变量 sudo apt install openjdk-11-jdk 1.3 配置环境变量&…...
外汇天眼:Marqeta加速欧洲业务发展,华沙办公室正式开幕
Marqeta,全球现代卡发行平台,今天宣布在波兰华沙设立新办公室,以支持其长期的业务和增长战略。通过在波兰设立业务,Marqeta直接获得了进入欧盟的通道,为其在跨境增长和提供增强服务奠定了良好基础。波兰作为欧洲中心位…...
使用【AliceCarousel】实现轮播功能
无论是在react还是vue项目中,我们都可能会遇到需要轮播的场景,在实习中,遇到了实现组件轮播的需求,下面进行简要记录。 1. 安装AliceCarousel npm install react-alice-carousel --save 2. 引入AliceCarousel组件 import Reac…...
全屋智能的本质是低成本的重构
全屋智能(这里指的不是每个电器都可以在APP上控制,而是基于场景化的全屋智能),我第一次去圣都总部听讲的时候是不准备做的(我的理解是这玩意儿带来的是至少十万的成本)。但随着对于装修各项事物的接触&…...
开发一个comfyui的自定义节点-支持输入中文prompt
文章目录 目标功能开发环境实现过程翻译中文CLIP编码拓展仓库地址完整代码目标功能 目前comfyui的prompt提示词输入节点 CLIP Text Encode 只支持输入英文的prompt,而有时候我们需要自己制定一些prompt,所以就得将我们想要的提示词翻译为英文后再复制粘贴到该节点的输入框中…...
代码随想录第二十九天打卡| 491.递增子序列,46.全排列,47.全排列 II
491.递增子序列 本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 代码随想录 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili class Solution { public:…...
音频数据上的会话情感分析
情感分析,也被称为观点挖掘,是自然语言处理(NLP)中一个流行的任务,因为它有着广泛的工业应用。在专门将自然语言处理技术应用于文本数据的背景下,主要目标是训练出一个能够将给定文本分类到不同情感类别的模型。下图给出了情感分类器的高级概述。 例如,三…...
算法金 | 一文读懂K均值(K-Means)聚类算法
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 1. 引言 数据分析中聚类算法的作用 在数据分析中,聚类算法用于发现数据集中的固有分组,通过将相似对象聚集在一…...
江协科技STM32学习-1 购买24Mhz采样逻辑分析仪
前言: 本文是根据哔哩哔哩网站上“江协科技STM32”视频的学习笔记,在这里会记录下江协科技STM32开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了江协科技STM32教学视频和链接中的内容。 引用: STM32入门教程-2023版 细致讲…...
支付系统-业务账单
target:离开柬埔寨倒计时-210day 前言 最近不知道该写什么了,很多东西要写起来非常耗时间,写作是真的不容易呀 我们的支付系统账单有两大类,一个是业务账单还有一个就是资金记录,都是引发资金流后的资金变动表现&…...
AI引领天文新篇章:中科院发现107例中性碳吸收线,揭示宇宙深邃奥秘
在浩渺无垠的宇宙中,探索未知的天文现象一直是科学家们不懈的追求。近日,中科院上海天文台的研究团队在《天文物理杂志》(MNRAS)上发布了重要研究成果:利用人工智能技术,成功探测到了107例中性碳吸收线&…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
