当前位置: 首页 > news >正文

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。

算法步骤:

  1. 初始化:
    • 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配到一个聚类中。
    • 设置一个聚类ID(cluster_id),初始化为0,用于标识不同的聚类。
  2. 遍历数据点:
    遍历数据集中的每个点。如果某点已经被标记(即不属于聚类0),则跳过该点。
  3. 查找邻居点:
    对于每个尚未被标记的点,使用get_neighbors函数查找其ε-邻域内的所有邻居点。这通常是通过计算该点与数据集中其他点之间的欧氏距离,并比较距离与ε来实现的。
  4. 处理邻居点数量:
    • 如果找到的邻居点数量小于min_pts(最小邻居数量),则将当前点标记为噪声点(标签设为-1)。
    • 如果邻居点数量大于或等于min_pts,则将该点标记为一个新的聚类(将cluster_id加1,并将该点标签设为新的cluster_id)。
  5. 扩展聚类:
    • 对于每个新发现的聚类中的点(即刚被标记为当前cluster_id的点),执行expand_cluster函数以进一步扩展聚类。
    • 在expand_cluster函数中,遍历当前点的所有邻居点,并根据其标签进行处理:
      • 如果邻居点是噪声点(标签为-1),则将其标记为当前聚类(将标签改为cluster_id)。
      • 如果邻居点尚未被标记(标签为0),则将其标记为当前聚类,并递归地查找并标记其邻居点(如果其邻居点数量也满足min_pts)。
  6. 返回结果:
    当所有点都被处理完毕后,算法返回每个数据点的最终聚类标签。

下面是代码实现:

from collections import Counterimport numpy as np
from sklearn.datasets import make_blobsdef dbscan(data, eps, min_pts):# 初始化每个数据点的聚类标签为 0labels = [0] * len(data)# 聚类 idcluster_id = 0for i in range(len(data)):if labels[i] != 0:# 如果数据点已经被标记过,则跳过该点,继续下一个点continue# 获取当前点的邻居点neighbors = get_neighbors(data, i, eps)# 如果邻居点的数量小于最小邻居数量,则将当前点标记为噪声点if len(neighbors) < min_pts:labels[i] = -1else:# 否则,增加聚类 idcluster_id += 1# 将当前点标记为当前聚类 idlabels[i] = cluster_id# 扩展聚类expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts)# 返回每个数据点的聚类标签return labelsdef expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts):# 遍历每个邻居点for neighbor in neighbors:# 如果邻居点的标签为 -1if labels[neighbor] == -1:# 将噪声点标记为当前聚类 idlabels[neighbor] = cluster_id# 如果邻居点的标签为 0elif labels[neighbor] == 0:# 将邻居点标记为当前聚类 idlabels[neighbor] = cluster_id# 获取邻居点的邻居点new_neighbors = get_neighbors(data, neighbor, eps)# 如果新的邻居点数量满足最小邻居数量要求,则将其加入邻居列表if len(new_neighbors) >= min_pts:neighbors += new_neighborsdef get_neighbors(data, point_idx, eps):# 邻居点列表neighbors = []for i in range(len(data)):# 计算当前点与目标点之间的欧氏距离,如果距离小于邻域半径 epsif np.linalg.norm(data[i] - data[point_idx]) < eps:# 将目标点的索引加入邻居点列表neighbors.append(i)# 返回邻居点列表return neighborsnp.random.seed(0)
# 生成样例数据
data, y = make_blobs(n_samples=200, centers=5, cluster_std=0.6)
print(Counter(y))eps, min_pts = 0.6, 3
# 进行聚类
labels = dbscan(data, eps, min_pts)
print(Counter(labels))

上述代码实现了一个简单的 DBSCAN 算法。注意,在实际应用中,你需要根据实际情况调整邻域半径参数和核心点周围最小数据点数。
一般情况下,最小数据点数取数据维度值的 2 倍数,最小取 3。 该参数越大,可能的噪声点会被聚类,同样的邻域半径越小,噪声点也会被分类。

相关文章:

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise&#xff0c;带噪声的基于空间密度聚类算法。 算法步骤&#xff1a; 初始化&#xff1a; 首先&#xff0c;为每个数据点分配一个初始聚类标签&#xff0c;这里设为0&#xff0c;表示该点尚未被分配…...

MySQL之查询性能优化(六)

查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联&#xff0c;那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如&#xff0c;我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…...

生成树协议STP(Spanning Tree Protocol)

为了提高网络可靠性&#xff0c;交换网络中通常会使用冗余链路。然而&#xff0c;冗余链路会给交换网络带来环路风险&#xff0c;并导致广播风暴以及MAC地址表不稳定等问题&#xff0c;进而会影响到用户的通信质量。生成树协议STP&#xff08;Spanning Tree Protocol&#xff0…...

03-3.1.1 栈的基本概念

&#x1f44b; Hi, I’m Beast Cheng&#x1f440; I’m interested in photography, hiking, landscape…&#x1f331; I’m currently learning python, javascript, kotlin…&#x1f4eb; How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以订…...

排序算法集合

1. 冒泡排序 排序的过程分为多趟&#xff0c;在每一趟中&#xff0c;从前向后遍历数组的无序部分&#xff0c;通过交换相邻两数位置的方式&#xff0c;将无序元素中最大的元素移动到无序部分的末尾&#xff08;第一趟中&#xff0c;将最大的元素移动到数组倒数第一的位置&…...

pdf文件太大如何变小,苹果电脑压缩pdf文件大小工具软件

压缩PDF文件是我们在日常办公和学习中经常会遇到的需求。PDF文件由于其跨平台、保持格式不变的特点&#xff0c;被广泛应用于各种场合。然而&#xff0c;有时候我们收到的PDF文件可能过大&#xff0c;不便于传输和存储&#xff0c;这时候就需要对PDF文件进行压缩。下面&#xf…...

vite项目打包,内存溢出

解决方案&#xff1a; "build1": "node --max-old-space-size8096 ./node_modules/vite/bin/vite.js build", 人工智能学习网站 https://chat.xutongbao.top...

Matlab解决施密特正交规范化矩阵(代码开源)

#最近在学习matlab&#xff0c;刚好和线代论文重合了 于是心血来潮用matlab建了一个模型来解决施密特正交规范化矩阵。 我们知道这个正交化矩阵挺公式化的&#xff0c;一般公式化的内容我们都可以用计算机来进行操作&#xff0c;节约我们人工的时间。 我们首先把矩阵导入进去…...

自养号测评助力:如何打造沃尔玛爆款?

沃尔玛&#xff0c;作为全球零售业的领军者&#xff0c;其平台为卖家们提供了一个巨大的商业舞台。然而&#xff0c;在这个竞争激烈的舞台上&#xff0c;如何迅速且有效地提升销量&#xff0c;成为了卖家们必须面对的重大挑战。 在探讨沃尔玛平台销量提升的策略时&#xff0c;我…...

C语言编译与链接

C语言编译与链接 目录 C语言编译与链接 一、概述 二、编译过程 三、链接过程...

电子电器架构 --- 智能座舱技术分类

电子电器架构 — 智能座舱技术分类 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,…...

提供操作日志、审计日志解决方案思路

操作日志 现在大部分公司一般使用SpringCloud这条技术栈&#xff0c;操作日志通过网关Gateway提供的Globalfilter统一拦截请求解析请求是比较好的选选择。 优点&#xff1a;相对于传统的过滤器、拦截器同步阻塞方案&#xff0c;SpringCloud Gateway使用的Webflux中的reactor-…...

选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴

在数字化、智能化的浪潮中&#xff0c;制造业正迎来一场前所未有的变革。而在这场变革中&#xff0c;富唯智能凭借其卓越的技术实力和创新能力&#xff0c;成为引领行业发展的领军企业。选择富唯智能的可重构装配系统&#xff0c;就是选择了一个可靠的合作伙伴&#xff0c;共同…...

echarts tooltip太多显示问题解决方案

思路&#xff1a;设置5个一换行 tooltip: {trigger: axis,confine:true,//限制tooltip在图表范围内展示// extraCssText: max-height:60%;overflow-y:scroll,//最大高度以及超出处理extraCssText: max-height:60%;overflow-y:scroll;white-space: normal;word-break: break-al…...

【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞

删除URDF和SDRF文件中的特殊注释#, !,&#xff1a; xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…...

深入对比:Transformer与LSTM的详细解析

在深度学习和自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;Transformer和长短时记忆网络&#xff08;LSTM&#xff09;是两个备受瞩目的模型。它们各自拥有独特的优势&#xff0c;并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比&#xff0c;帮助…...

lsof 命令

lsof&#xff08;list open files&#xff09;是一个列出当前系统打开文件的工具。在linux环境下&#xff0c;任何事物都以文件的形式存在&#xff0c;通过文件不仅仅可以访问常规数据&#xff0c;还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...

F5G城市光网,助力“一网通城”筑基数字中国

《淮南子》中说&#xff0c;“临河而羡鱼&#xff0c;不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备&#xff0c;有了合适的工具&#xff0c;牢固的基础&#xff0c;各种难题也会迎刃而解。 如今&#xff0c;数字中国发展建设如火如荼&#xff0c;各项任务…...

Ownips+Coze海外社媒数据分析实战指南

目录 一、引言二、ISP代理简介三、应用实践——基于Ownips和coze的社媒智能分析助手3.1、Twitter趋势数据采集3.1.1、Twitter趋势数据接口分析3.1.2、Ownips原生住宅ISP选取与配置3.1.3、数据采集 3.2、基于Ownips和Coze的社媒智能助手3.2.1、Ownips数据采集插件集成3.2.2、创建…...

C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤

前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...