DBSCAN 算法【python,机器学习,算法】
DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。
算法步骤:
- 初始化:
- 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配到一个聚类中。
- 设置一个聚类ID(cluster_id),初始化为0,用于标识不同的聚类。
- 遍历数据点:
遍历数据集中的每个点。如果某点已经被标记(即不属于聚类0),则跳过该点。 - 查找邻居点:
对于每个尚未被标记的点,使用get_neighbors函数查找其ε-邻域内的所有邻居点。这通常是通过计算该点与数据集中其他点之间的欧氏距离,并比较距离与ε来实现的。 - 处理邻居点数量:
- 如果找到的邻居点数量小于min_pts(最小邻居数量),则将当前点标记为噪声点(标签设为-1)。
- 如果邻居点数量大于或等于min_pts,则将该点标记为一个新的聚类(将cluster_id加1,并将该点标签设为新的cluster_id)。
- 扩展聚类:
- 对于每个新发现的聚类中的点(即刚被标记为当前cluster_id的点),执行expand_cluster函数以进一步扩展聚类。
- 在expand_cluster函数中,遍历当前点的所有邻居点,并根据其标签进行处理:
- 如果邻居点是噪声点(标签为-1),则将其标记为当前聚类(将标签改为cluster_id)。
- 如果邻居点尚未被标记(标签为0),则将其标记为当前聚类,并递归地查找并标记其邻居点(如果其邻居点数量也满足min_pts)。
- 返回结果:
当所有点都被处理完毕后,算法返回每个数据点的最终聚类标签。
下面是代码实现:
from collections import Counterimport numpy as np
from sklearn.datasets import make_blobsdef dbscan(data, eps, min_pts):# 初始化每个数据点的聚类标签为 0labels = [0] * len(data)# 聚类 idcluster_id = 0for i in range(len(data)):if labels[i] != 0:# 如果数据点已经被标记过,则跳过该点,继续下一个点continue# 获取当前点的邻居点neighbors = get_neighbors(data, i, eps)# 如果邻居点的数量小于最小邻居数量,则将当前点标记为噪声点if len(neighbors) < min_pts:labels[i] = -1else:# 否则,增加聚类 idcluster_id += 1# 将当前点标记为当前聚类 idlabels[i] = cluster_id# 扩展聚类expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts)# 返回每个数据点的聚类标签return labelsdef expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts):# 遍历每个邻居点for neighbor in neighbors:# 如果邻居点的标签为 -1if labels[neighbor] == -1:# 将噪声点标记为当前聚类 idlabels[neighbor] = cluster_id# 如果邻居点的标签为 0elif labels[neighbor] == 0:# 将邻居点标记为当前聚类 idlabels[neighbor] = cluster_id# 获取邻居点的邻居点new_neighbors = get_neighbors(data, neighbor, eps)# 如果新的邻居点数量满足最小邻居数量要求,则将其加入邻居列表if len(new_neighbors) >= min_pts:neighbors += new_neighborsdef get_neighbors(data, point_idx, eps):# 邻居点列表neighbors = []for i in range(len(data)):# 计算当前点与目标点之间的欧氏距离,如果距离小于邻域半径 epsif np.linalg.norm(data[i] - data[point_idx]) < eps:# 将目标点的索引加入邻居点列表neighbors.append(i)# 返回邻居点列表return neighborsnp.random.seed(0)
# 生成样例数据
data, y = make_blobs(n_samples=200, centers=5, cluster_std=0.6)
print(Counter(y))eps, min_pts = 0.6, 3
# 进行聚类
labels = dbscan(data, eps, min_pts)
print(Counter(labels))
上述代码实现了一个简单的 DBSCAN 算法。注意,在实际应用中,你需要根据实际情况调整邻域半径参数和核心点周围最小数据点数。
一般情况下,最小数据点数取数据维度值的 2 倍数,最小取 3。 该参数越大,可能的噪声点会被聚类,同样的邻域半径越小,噪声点也会被分类。
相关文章:
DBSCAN 算法【python,机器学习,算法】
DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。 算法步骤: 初始化: 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配…...
MySQL之查询性能优化(六)
查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联,那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如,我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…...
生成树协议STP(Spanning Tree Protocol)
为了提高网络可靠性,交换网络中通常会使用冗余链路。然而,冗余链路会给交换网络带来环路风险,并导致广播风暴以及MAC地址表不稳定等问题,进而会影响到用户的通信质量。生成树协议STP(Spanning Tree Protocol࿰…...
03-3.1.1 栈的基本概念
👋 Hi, I’m Beast Cheng👀 I’m interested in photography, hiking, landscape…🌱 I’m currently learning python, javascript, kotlin…📫 How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以订…...
排序算法集合
1. 冒泡排序 排序的过程分为多趟,在每一趟中,从前向后遍历数组的无序部分,通过交换相邻两数位置的方式,将无序元素中最大的元素移动到无序部分的末尾(第一趟中,将最大的元素移动到数组倒数第一的位置&…...
pdf文件太大如何变小,苹果电脑压缩pdf文件大小工具软件
压缩PDF文件是我们在日常办公和学习中经常会遇到的需求。PDF文件由于其跨平台、保持格式不变的特点,被广泛应用于各种场合。然而,有时候我们收到的PDF文件可能过大,不便于传输和存储,这时候就需要对PDF文件进行压缩。下面…...
vite项目打包,内存溢出
解决方案: "build1": "node --max-old-space-size8096 ./node_modules/vite/bin/vite.js build", 人工智能学习网站 https://chat.xutongbao.top...
Matlab解决施密特正交规范化矩阵(代码开源)
#最近在学习matlab,刚好和线代论文重合了 于是心血来潮用matlab建了一个模型来解决施密特正交规范化矩阵。 我们知道这个正交化矩阵挺公式化的,一般公式化的内容我们都可以用计算机来进行操作,节约我们人工的时间。 我们首先把矩阵导入进去…...
自养号测评助力:如何打造沃尔玛爆款?
沃尔玛,作为全球零售业的领军者,其平台为卖家们提供了一个巨大的商业舞台。然而,在这个竞争激烈的舞台上,如何迅速且有效地提升销量,成为了卖家们必须面对的重大挑战。 在探讨沃尔玛平台销量提升的策略时,我…...
C语言编译与链接
C语言编译与链接 目录 C语言编译与链接 一、概述 二、编译过程 三、链接过程...
电子电器架构 --- 智能座舱技术分类
电子电器架构 — 智能座舱技术分类 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,…...
提供操作日志、审计日志解决方案思路
操作日志 现在大部分公司一般使用SpringCloud这条技术栈,操作日志通过网关Gateway提供的Globalfilter统一拦截请求解析请求是比较好的选选择。 优点:相对于传统的过滤器、拦截器同步阻塞方案,SpringCloud Gateway使用的Webflux中的reactor-…...
选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴
在数字化、智能化的浪潮中,制造业正迎来一场前所未有的变革。而在这场变革中,富唯智能凭借其卓越的技术实力和创新能力,成为引领行业发展的领军企业。选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴,共同…...
echarts tooltip太多显示问题解决方案
思路:设置5个一换行 tooltip: {trigger: axis,confine:true,//限制tooltip在图表范围内展示// extraCssText: max-height:60%;overflow-y:scroll,//最大高度以及超出处理extraCssText: max-height:60%;overflow-y:scroll;white-space: normal;word-break: break-al…...
【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞
删除URDF和SDRF文件中的特殊注释#, !,: xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…...
深入对比:Transformer与LSTM的详细解析
在深度学习和自然语言处理(NLP)领域,Transformer和长短时记忆网络(LSTM)是两个备受瞩目的模型。它们各自拥有独特的优势,并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比,帮助…...
lsof 命令
lsof(list open files)是一个列出当前系统打开文件的工具。在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...
F5G城市光网,助力“一网通城”筑基数字中国
《淮南子》中说,“临河而羡鱼,不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备,有了合适的工具,牢固的基础,各种难题也会迎刃而解。 如今,数字中国发展建设如火如荼,各项任务…...
Ownips+Coze海外社媒数据分析实战指南
目录 一、引言二、ISP代理简介三、应用实践——基于Ownips和coze的社媒智能分析助手3.1、Twitter趋势数据采集3.1.1、Twitter趋势数据接口分析3.1.2、Ownips原生住宅ISP选取与配置3.1.3、数据采集 3.2、基于Ownips和Coze的社媒智能助手3.2.1、Ownips数据采集插件集成3.2.2、创建…...
C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤
前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
