当前位置: 首页 > news >正文

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。

算法步骤:

  1. 初始化:
    • 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配到一个聚类中。
    • 设置一个聚类ID(cluster_id),初始化为0,用于标识不同的聚类。
  2. 遍历数据点:
    遍历数据集中的每个点。如果某点已经被标记(即不属于聚类0),则跳过该点。
  3. 查找邻居点:
    对于每个尚未被标记的点,使用get_neighbors函数查找其ε-邻域内的所有邻居点。这通常是通过计算该点与数据集中其他点之间的欧氏距离,并比较距离与ε来实现的。
  4. 处理邻居点数量:
    • 如果找到的邻居点数量小于min_pts(最小邻居数量),则将当前点标记为噪声点(标签设为-1)。
    • 如果邻居点数量大于或等于min_pts,则将该点标记为一个新的聚类(将cluster_id加1,并将该点标签设为新的cluster_id)。
  5. 扩展聚类:
    • 对于每个新发现的聚类中的点(即刚被标记为当前cluster_id的点),执行expand_cluster函数以进一步扩展聚类。
    • 在expand_cluster函数中,遍历当前点的所有邻居点,并根据其标签进行处理:
      • 如果邻居点是噪声点(标签为-1),则将其标记为当前聚类(将标签改为cluster_id)。
      • 如果邻居点尚未被标记(标签为0),则将其标记为当前聚类,并递归地查找并标记其邻居点(如果其邻居点数量也满足min_pts)。
  6. 返回结果:
    当所有点都被处理完毕后,算法返回每个数据点的最终聚类标签。

下面是代码实现:

from collections import Counterimport numpy as np
from sklearn.datasets import make_blobsdef dbscan(data, eps, min_pts):# 初始化每个数据点的聚类标签为 0labels = [0] * len(data)# 聚类 idcluster_id = 0for i in range(len(data)):if labels[i] != 0:# 如果数据点已经被标记过,则跳过该点,继续下一个点continue# 获取当前点的邻居点neighbors = get_neighbors(data, i, eps)# 如果邻居点的数量小于最小邻居数量,则将当前点标记为噪声点if len(neighbors) < min_pts:labels[i] = -1else:# 否则,增加聚类 idcluster_id += 1# 将当前点标记为当前聚类 idlabels[i] = cluster_id# 扩展聚类expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts)# 返回每个数据点的聚类标签return labelsdef expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts):# 遍历每个邻居点for neighbor in neighbors:# 如果邻居点的标签为 -1if labels[neighbor] == -1:# 将噪声点标记为当前聚类 idlabels[neighbor] = cluster_id# 如果邻居点的标签为 0elif labels[neighbor] == 0:# 将邻居点标记为当前聚类 idlabels[neighbor] = cluster_id# 获取邻居点的邻居点new_neighbors = get_neighbors(data, neighbor, eps)# 如果新的邻居点数量满足最小邻居数量要求,则将其加入邻居列表if len(new_neighbors) >= min_pts:neighbors += new_neighborsdef get_neighbors(data, point_idx, eps):# 邻居点列表neighbors = []for i in range(len(data)):# 计算当前点与目标点之间的欧氏距离,如果距离小于邻域半径 epsif np.linalg.norm(data[i] - data[point_idx]) < eps:# 将目标点的索引加入邻居点列表neighbors.append(i)# 返回邻居点列表return neighborsnp.random.seed(0)
# 生成样例数据
data, y = make_blobs(n_samples=200, centers=5, cluster_std=0.6)
print(Counter(y))eps, min_pts = 0.6, 3
# 进行聚类
labels = dbscan(data, eps, min_pts)
print(Counter(labels))

上述代码实现了一个简单的 DBSCAN 算法。注意,在实际应用中,你需要根据实际情况调整邻域半径参数和核心点周围最小数据点数。
一般情况下,最小数据点数取数据维度值的 2 倍数,最小取 3。 该参数越大,可能的噪声点会被聚类,同样的邻域半径越小,噪声点也会被分类。

相关文章:

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise&#xff0c;带噪声的基于空间密度聚类算法。 算法步骤&#xff1a; 初始化&#xff1a; 首先&#xff0c;为每个数据点分配一个初始聚类标签&#xff0c;这里设为0&#xff0c;表示该点尚未被分配…...

MySQL之查询性能优化(六)

查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联&#xff0c;那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如&#xff0c;我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…...

生成树协议STP(Spanning Tree Protocol)

为了提高网络可靠性&#xff0c;交换网络中通常会使用冗余链路。然而&#xff0c;冗余链路会给交换网络带来环路风险&#xff0c;并导致广播风暴以及MAC地址表不稳定等问题&#xff0c;进而会影响到用户的通信质量。生成树协议STP&#xff08;Spanning Tree Protocol&#xff0…...

03-3.1.1 栈的基本概念

&#x1f44b; Hi, I’m Beast Cheng&#x1f440; I’m interested in photography, hiking, landscape…&#x1f331; I’m currently learning python, javascript, kotlin…&#x1f4eb; How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以订…...

排序算法集合

1. 冒泡排序 排序的过程分为多趟&#xff0c;在每一趟中&#xff0c;从前向后遍历数组的无序部分&#xff0c;通过交换相邻两数位置的方式&#xff0c;将无序元素中最大的元素移动到无序部分的末尾&#xff08;第一趟中&#xff0c;将最大的元素移动到数组倒数第一的位置&…...

pdf文件太大如何变小,苹果电脑压缩pdf文件大小工具软件

压缩PDF文件是我们在日常办公和学习中经常会遇到的需求。PDF文件由于其跨平台、保持格式不变的特点&#xff0c;被广泛应用于各种场合。然而&#xff0c;有时候我们收到的PDF文件可能过大&#xff0c;不便于传输和存储&#xff0c;这时候就需要对PDF文件进行压缩。下面&#xf…...

vite项目打包,内存溢出

解决方案&#xff1a; "build1": "node --max-old-space-size8096 ./node_modules/vite/bin/vite.js build", 人工智能学习网站 https://chat.xutongbao.top...

Matlab解决施密特正交规范化矩阵(代码开源)

#最近在学习matlab&#xff0c;刚好和线代论文重合了 于是心血来潮用matlab建了一个模型来解决施密特正交规范化矩阵。 我们知道这个正交化矩阵挺公式化的&#xff0c;一般公式化的内容我们都可以用计算机来进行操作&#xff0c;节约我们人工的时间。 我们首先把矩阵导入进去…...

自养号测评助力:如何打造沃尔玛爆款?

沃尔玛&#xff0c;作为全球零售业的领军者&#xff0c;其平台为卖家们提供了一个巨大的商业舞台。然而&#xff0c;在这个竞争激烈的舞台上&#xff0c;如何迅速且有效地提升销量&#xff0c;成为了卖家们必须面对的重大挑战。 在探讨沃尔玛平台销量提升的策略时&#xff0c;我…...

C语言编译与链接

C语言编译与链接 目录 C语言编译与链接 一、概述 二、编译过程 三、链接过程...

电子电器架构 --- 智能座舱技术分类

电子电器架构 — 智能座舱技术分类 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,…...

提供操作日志、审计日志解决方案思路

操作日志 现在大部分公司一般使用SpringCloud这条技术栈&#xff0c;操作日志通过网关Gateway提供的Globalfilter统一拦截请求解析请求是比较好的选选择。 优点&#xff1a;相对于传统的过滤器、拦截器同步阻塞方案&#xff0c;SpringCloud Gateway使用的Webflux中的reactor-…...

选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴

在数字化、智能化的浪潮中&#xff0c;制造业正迎来一场前所未有的变革。而在这场变革中&#xff0c;富唯智能凭借其卓越的技术实力和创新能力&#xff0c;成为引领行业发展的领军企业。选择富唯智能的可重构装配系统&#xff0c;就是选择了一个可靠的合作伙伴&#xff0c;共同…...

echarts tooltip太多显示问题解决方案

思路&#xff1a;设置5个一换行 tooltip: {trigger: axis,confine:true,//限制tooltip在图表范围内展示// extraCssText: max-height:60%;overflow-y:scroll,//最大高度以及超出处理extraCssText: max-height:60%;overflow-y:scroll;white-space: normal;word-break: break-al…...

【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞

删除URDF和SDRF文件中的特殊注释#, !,&#xff1a; xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…...

深入对比:Transformer与LSTM的详细解析

在深度学习和自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;Transformer和长短时记忆网络&#xff08;LSTM&#xff09;是两个备受瞩目的模型。它们各自拥有独特的优势&#xff0c;并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比&#xff0c;帮助…...

lsof 命令

lsof&#xff08;list open files&#xff09;是一个列出当前系统打开文件的工具。在linux环境下&#xff0c;任何事物都以文件的形式存在&#xff0c;通过文件不仅仅可以访问常规数据&#xff0c;还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...

F5G城市光网,助力“一网通城”筑基数字中国

《淮南子》中说&#xff0c;“临河而羡鱼&#xff0c;不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备&#xff0c;有了合适的工具&#xff0c;牢固的基础&#xff0c;各种难题也会迎刃而解。 如今&#xff0c;数字中国发展建设如火如荼&#xff0c;各项任务…...

Ownips+Coze海外社媒数据分析实战指南

目录 一、引言二、ISP代理简介三、应用实践——基于Ownips和coze的社媒智能分析助手3.1、Twitter趋势数据采集3.1.1、Twitter趋势数据接口分析3.1.2、Ownips原生住宅ISP选取与配置3.1.3、数据采集 3.2、基于Ownips和Coze的社媒智能助手3.2.1、Ownips数据采集插件集成3.2.2、创建…...

C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤

前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...