当前位置: 首页 > news >正文

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。

算法步骤:

  1. 初始化:
    • 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配到一个聚类中。
    • 设置一个聚类ID(cluster_id),初始化为0,用于标识不同的聚类。
  2. 遍历数据点:
    遍历数据集中的每个点。如果某点已经被标记(即不属于聚类0),则跳过该点。
  3. 查找邻居点:
    对于每个尚未被标记的点,使用get_neighbors函数查找其ε-邻域内的所有邻居点。这通常是通过计算该点与数据集中其他点之间的欧氏距离,并比较距离与ε来实现的。
  4. 处理邻居点数量:
    • 如果找到的邻居点数量小于min_pts(最小邻居数量),则将当前点标记为噪声点(标签设为-1)。
    • 如果邻居点数量大于或等于min_pts,则将该点标记为一个新的聚类(将cluster_id加1,并将该点标签设为新的cluster_id)。
  5. 扩展聚类:
    • 对于每个新发现的聚类中的点(即刚被标记为当前cluster_id的点),执行expand_cluster函数以进一步扩展聚类。
    • 在expand_cluster函数中,遍历当前点的所有邻居点,并根据其标签进行处理:
      • 如果邻居点是噪声点(标签为-1),则将其标记为当前聚类(将标签改为cluster_id)。
      • 如果邻居点尚未被标记(标签为0),则将其标记为当前聚类,并递归地查找并标记其邻居点(如果其邻居点数量也满足min_pts)。
  6. 返回结果:
    当所有点都被处理完毕后,算法返回每个数据点的最终聚类标签。

下面是代码实现:

from collections import Counterimport numpy as np
from sklearn.datasets import make_blobsdef dbscan(data, eps, min_pts):# 初始化每个数据点的聚类标签为 0labels = [0] * len(data)# 聚类 idcluster_id = 0for i in range(len(data)):if labels[i] != 0:# 如果数据点已经被标记过,则跳过该点,继续下一个点continue# 获取当前点的邻居点neighbors = get_neighbors(data, i, eps)# 如果邻居点的数量小于最小邻居数量,则将当前点标记为噪声点if len(neighbors) < min_pts:labels[i] = -1else:# 否则,增加聚类 idcluster_id += 1# 将当前点标记为当前聚类 idlabels[i] = cluster_id# 扩展聚类expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts)# 返回每个数据点的聚类标签return labelsdef expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts):# 遍历每个邻居点for neighbor in neighbors:# 如果邻居点的标签为 -1if labels[neighbor] == -1:# 将噪声点标记为当前聚类 idlabels[neighbor] = cluster_id# 如果邻居点的标签为 0elif labels[neighbor] == 0:# 将邻居点标记为当前聚类 idlabels[neighbor] = cluster_id# 获取邻居点的邻居点new_neighbors = get_neighbors(data, neighbor, eps)# 如果新的邻居点数量满足最小邻居数量要求,则将其加入邻居列表if len(new_neighbors) >= min_pts:neighbors += new_neighborsdef get_neighbors(data, point_idx, eps):# 邻居点列表neighbors = []for i in range(len(data)):# 计算当前点与目标点之间的欧氏距离,如果距离小于邻域半径 epsif np.linalg.norm(data[i] - data[point_idx]) < eps:# 将目标点的索引加入邻居点列表neighbors.append(i)# 返回邻居点列表return neighborsnp.random.seed(0)
# 生成样例数据
data, y = make_blobs(n_samples=200, centers=5, cluster_std=0.6)
print(Counter(y))eps, min_pts = 0.6, 3
# 进行聚类
labels = dbscan(data, eps, min_pts)
print(Counter(labels))

上述代码实现了一个简单的 DBSCAN 算法。注意,在实际应用中,你需要根据实际情况调整邻域半径参数和核心点周围最小数据点数。
一般情况下,最小数据点数取数据维度值的 2 倍数,最小取 3。 该参数越大,可能的噪声点会被聚类,同样的邻域半径越小,噪声点也会被分类。

相关文章:

DBSCAN 算法【python,机器学习,算法】

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise&#xff0c;带噪声的基于空间密度聚类算法。 算法步骤&#xff1a; 初始化&#xff1a; 首先&#xff0c;为每个数据点分配一个初始聚类标签&#xff0c;这里设为0&#xff0c;表示该点尚未被分配…...

MySQL之查询性能优化(六)

查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联&#xff0c;那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如&#xff0c;我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…...

生成树协议STP(Spanning Tree Protocol)

为了提高网络可靠性&#xff0c;交换网络中通常会使用冗余链路。然而&#xff0c;冗余链路会给交换网络带来环路风险&#xff0c;并导致广播风暴以及MAC地址表不稳定等问题&#xff0c;进而会影响到用户的通信质量。生成树协议STP&#xff08;Spanning Tree Protocol&#xff0…...

03-3.1.1 栈的基本概念

&#x1f44b; Hi, I’m Beast Cheng&#x1f440; I’m interested in photography, hiking, landscape…&#x1f331; I’m currently learning python, javascript, kotlin…&#x1f4eb; How to reach me --> 458290771qq.com 喜欢《数据结构》部分笔记的小伙伴可以订…...

排序算法集合

1. 冒泡排序 排序的过程分为多趟&#xff0c;在每一趟中&#xff0c;从前向后遍历数组的无序部分&#xff0c;通过交换相邻两数位置的方式&#xff0c;将无序元素中最大的元素移动到无序部分的末尾&#xff08;第一趟中&#xff0c;将最大的元素移动到数组倒数第一的位置&…...

pdf文件太大如何变小,苹果电脑压缩pdf文件大小工具软件

压缩PDF文件是我们在日常办公和学习中经常会遇到的需求。PDF文件由于其跨平台、保持格式不变的特点&#xff0c;被广泛应用于各种场合。然而&#xff0c;有时候我们收到的PDF文件可能过大&#xff0c;不便于传输和存储&#xff0c;这时候就需要对PDF文件进行压缩。下面&#xf…...

vite项目打包,内存溢出

解决方案&#xff1a; "build1": "node --max-old-space-size8096 ./node_modules/vite/bin/vite.js build", 人工智能学习网站 https://chat.xutongbao.top...

Matlab解决施密特正交规范化矩阵(代码开源)

#最近在学习matlab&#xff0c;刚好和线代论文重合了 于是心血来潮用matlab建了一个模型来解决施密特正交规范化矩阵。 我们知道这个正交化矩阵挺公式化的&#xff0c;一般公式化的内容我们都可以用计算机来进行操作&#xff0c;节约我们人工的时间。 我们首先把矩阵导入进去…...

自养号测评助力:如何打造沃尔玛爆款?

沃尔玛&#xff0c;作为全球零售业的领军者&#xff0c;其平台为卖家们提供了一个巨大的商业舞台。然而&#xff0c;在这个竞争激烈的舞台上&#xff0c;如何迅速且有效地提升销量&#xff0c;成为了卖家们必须面对的重大挑战。 在探讨沃尔玛平台销量提升的策略时&#xff0c;我…...

C语言编译与链接

C语言编译与链接 目录 C语言编译与链接 一、概述 二、编译过程 三、链接过程...

电子电器架构 --- 智能座舱技术分类

电子电器架构 — 智能座舱技术分类 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,…...

提供操作日志、审计日志解决方案思路

操作日志 现在大部分公司一般使用SpringCloud这条技术栈&#xff0c;操作日志通过网关Gateway提供的Globalfilter统一拦截请求解析请求是比较好的选选择。 优点&#xff1a;相对于传统的过滤器、拦截器同步阻塞方案&#xff0c;SpringCloud Gateway使用的Webflux中的reactor-…...

选择富唯智能的可重构装配系统,就是选择了一个可靠的合作伙伴

在数字化、智能化的浪潮中&#xff0c;制造业正迎来一场前所未有的变革。而在这场变革中&#xff0c;富唯智能凭借其卓越的技术实力和创新能力&#xff0c;成为引领行业发展的领军企业。选择富唯智能的可重构装配系统&#xff0c;就是选择了一个可靠的合作伙伴&#xff0c;共同…...

echarts tooltip太多显示问题解决方案

思路&#xff1a;设置5个一换行 tooltip: {trigger: axis,confine:true,//限制tooltip在图表范围内展示// extraCssText: max-height:60%;overflow-y:scroll,//最大高度以及超出处理extraCssText: max-height:60%;overflow-y:scroll;white-space: normal;word-break: break-al…...

【control_manager】无法加载,gazebo_ros2_control 0.4.8,机械臂乱飞

删除URDF和SDRF文件中的特殊注释#, !,&#xff1a; xacro文件解析为字符串时出现报错 一开始疯狂报错Waiting for /controller_manager node to exist 1717585645.4673686 [spawner-2] [INFO] [1717585645.467015300] [spawner_joint_state_broadcaster]: Waiting for /con…...

深入对比:Transformer与LSTM的详细解析

在深度学习和自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;Transformer和长短时记忆网络&#xff08;LSTM&#xff09;是两个备受瞩目的模型。它们各自拥有独特的优势&#xff0c;并在不同的任务中发挥着重要作用。本文将对这两种模型进行详细对比&#xff0c;帮助…...

lsof 命令

lsof&#xff08;list open files&#xff09;是一个列出当前系统打开文件的工具。在linux环境下&#xff0c;任何事物都以文件的形式存在&#xff0c;通过文件不仅仅可以访问常规数据&#xff0c;还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) …...

F5G城市光网,助力“一网通城”筑基数字中国

《淮南子》中说&#xff0c;“临河而羡鱼&#xff0c;不如归家织网”。 这句话在后世比喻为做任何事情都需要提前做好准备&#xff0c;有了合适的工具&#xff0c;牢固的基础&#xff0c;各种难题也会迎刃而解。 如今&#xff0c;数字中国发展建设如火如荼&#xff0c;各项任务…...

Ownips+Coze海外社媒数据分析实战指南

目录 一、引言二、ISP代理简介三、应用实践——基于Ownips和coze的社媒智能分析助手3.1、Twitter趋势数据采集3.1.1、Twitter趋势数据接口分析3.1.2、Ownips原生住宅ISP选取与配置3.1.3、数据采集 3.2、基于Ownips和Coze的社媒智能助手3.2.1、Ownips数据采集插件集成3.2.2、创建…...

C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤

前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...