当前位置: 首页 > news >正文

【RAG提升技巧】查询改写HyDE

简介

提高 RAG 推理能力的一个好方法是添加查询理解层 ——在实际查询向量存储之前添加查询转换。以下是四种不同的查询转换:

  • 路由:保留初始查询,同时查明其所属的适当工具子集。然后,将这些工具指定为合适的选项。
  • 查询重写:维护选定的工具,但以多种方式重新编写查询,以将其应用于同一组工具。
  • 子问题:将查询分解为几个较小的问题,每个问题针对由其元数据确定的不同工具。
  • ReAct Agent 工具选择:根据原始查询,确定要使用的工具并制定要在该工具上运行的特定查询。

HyDE来自于Precise Zero-Shot Dense Retrieval without Relevance Labels,这篇文章主要做zero-shot场景下的稠密检索,通过借助LLM的力量不需要Relevance Labels,开箱即用。作者提出Hypothetical Document Embeddings (HyDE)方法,即“假设”文档嵌入。具体的做法是通过GPT生成虚构的文档,并使用无监督检索器对其进行编码,并在其嵌入空间中进行搜索,从而不需要任何人工标注数据

模型结构如下图所示,HyDE将密集检索分解为两个任务,即 instruction-following的LM生成任务和对比编码器执行的文档相似性任务。

paper:https://arxiv.org/pdf/2212.10496
code:https://github.com/texttron/hyde

原理以及实现

典型的密集信息检索过程包括以下步骤:

  • 将查询和文档转换为嵌入(向量)
  • 计算查询和文档之间的余弦相似度
  • 返回余弦相似度最高的文档

    通过 HyDE,query embedding我做了一些改进。首先让 LLM 生成回答查询的文档,然后将生成的虚拟答案转换为嵌入,而不是直接将查询转换为嵌入。


我们在LangChain上实际使用一下。

from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import LLMChain, HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from dotenv import load_dotenv
# set the environment variables
load_dotenv()# prepare the prompt template for document generation
Prompt_template = """回答问题。
问题:{question}
回答:”””
llm = ChatOpenAI()
# multi_llm = ChatOpenAI(n=4)
prompt = PromptTemplate(input_variables=["question"], template=prompt_template)
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True)# initialize the hypothetical document embedder
base_embeddings = OpenAIEmbeddings()
embeddings = HypotheticalDocumentEmbedder(llm_chain=llm_chain, base_embeddings=base_embeddings)result = embeddings.embed_query("塞尔达传说的主角是谁?")
len(result)

相关文章:

【RAG提升技巧】查询改写HyDE

简介 提高 RAG 推理能力的一个好方法是添加查询理解层 ——在实际查询向量存储之前添加查询转换。以下是四种不同的查询转换: 路由:保留初始查询,同时查明其所属的适当工具子集。然后,将这些工具指定为合适的选项。查询重写&…...

前端面试题日常练-day56 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 1. PHP中的预定义变量$_SERVER用于存储什么类型的数据? a) 用户的输入数据 b) 浏览器发送的请求信息 c) 服务器的配置信息 d) PHP脚本中定义的变量 2. 在PHP中,以下哪个函数…...

【frp】frpc客户端在ubuntu服务器上的配置

FRP简单配置内网穿透 官方仓库 ,说明比较简单 复杂一点要付费加入星球了。 而且frp还支持插件,目前还不清楚具体使用。 幸好,这位大神给出的非常详细 而且客户端与服务端都是部署在ubuntu的: 【frp】服务端配置与systemd启动 进行了frps的简单配置。 局域网内的机器是ubunt…...

构建LangChain应用程序的示例代码:20、使用LangChain的SQLDatabase包装器连接到Databricks运行时并执行查询操作教程

Databricks SQL 数据库连接 概述 这个笔记本介绍了如何使用LangChain的SQLDatabase包装器连接到Databricks运行时和Databricks SQL。 内容分为三个部分:安装和设置、连接到Databricks以及示例。 安装和设置 !pip install databricks-sql-connector # 安装Datab…...

PHP Standards Recommendations(PSR)

以下是 PHP Standards Recommendations(PSR)的全部内容: PSR-1:基础编码标准:规定了 PHP 代码的基本格式和要求,包括文件的编码、标签的使用、代码的组织等。PSR-2:编码风格指南:是对…...

[word] word2019中制表符的妙用 #媒体#笔记#知识分享

word2019中制表符的妙用 word2019表格功能是非常强大的,很多朋友都认为以前的制表符已经没有什么用途了,其实不然,在一切特殊的场合,word2019制表符还是非常有用的,下面就为大家介绍word2019中制表符的妙用。 步骤1、…...

太阳能航空障碍灯在航空安全发挥什么作用_鼎跃安全

随着我国经济的快速发展,空域已经成为经济发展的重要领域。航空运输、空中旅游、无人机物流、飞行汽车等经济活动为空域经济发展提供了巨大潜力。然而,空域安全作为空域经济发展的关键因素,受到了广泛关注。 随着空域经济活动的多样化和密集…...

NineData云原生智能数据管理平台新功能发布|2024年5月版

重点发布​ 数据库 DevOps - 表分组查询​ 在企业用户规模达到一定程度后,分库分表成为一种常见的数据库架构选择。在这种情况下,查询和维护数据需要高效的解决方案,以避免手动逐一查询、变更和汇总多个分库和分表的繁琐操作。 库分组变更…...

【Android面试八股文】使用equals和==进行比较的区别?

使用equals和==进行比较的区别 这道题想考察什么 ? 在开发中当需要对引用类型和基本数据类型比较时应该怎么做,为什么有区别。 考察的知识点 equals 的实现以及栈和堆的内存管理 考生应该如何回答 在 Java 中,equals() 方法和 == 运算符用于比较对象之间的相等性,但它…...

利用架构挖掘增强云管理

管理当今复杂的云环境比以往任何时候都更加重要。 大多数企业依赖 AWS、Azure、Kubernetes 和 Microsoft Entra ID 等各种平台来支持其运营,但管理这些平台可能会带来重大挑战。 云优化的最大挑战涉及安全性、成本管理和了解云基础设施内错综复杂的相互依赖关系。…...

力扣 48.旋转图像

题目描述: 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],…...

前端角色负责人岗

定位: 有效搭建、领导、优化一个自驱力强的前端团队,通过制度和工具把控质量和提高团队的生产力。 素质要求: 资深的技术专家且在流程规范、技术上自成体系;团队基础建设和持续集成方面需要有丰富的经验;具备组织管…...

git根据历史某次提交创建新分支

有时候项目在做版本管理的时候,忘记了创建某次版本的分支,而直接在主分支上进行开发了,这个时候,想要对某次提交单独拉出来一个版本分支,就需要用到这个功能: git checkout -b 新分支名 某次提交的id 找到…...

如何评价GPT-4o?GPT-4o和ChatGPT4.0的区别是啥呢?

如何评价GPT-4o? GPT-4o代表了人工智能领域的一个重要里程碑,它不仅继承了GPT-4的强大智能,还在多模态交互方面取得了显著进步。以下是几个方面的分析: 技术特点 多模态交互能力:GPT-4o支持文本、音频和图像的任意组合输入与输出…...

病理级Polymer酶标二抗IHC试剂盒上线!

免疫组织化学 Immunohistochemistry,lHC 是利用抗体与抗原特异性识别原理,对组织样本中的抗原进行定位/定性分析的实验技术。组织切片保留了样品的解剖学结构特征,从而可以高分辨率地显现蛋白在细胞,甚至细胞器中的定位。基于以上特性&…...

动态规划(多重背包问题+二进制优化)

引言 多重背包,相对于01背包来说,多重背包是每个物品会有相应的个数,最多可以选那么多个,因而对于朴素多重背包,需要在01背包的基础上,再加一层物品的循环 朴素多重背包例题 P2347 [NOIP1996 提高组] 砝…...

AI学习指南机器学习篇-逻辑回归正则化技术

AI学习指南机器学习篇-逻辑回归正则化技术 在机器学习领域,逻辑回归是一种常见的分类算法,它常用于处理二分类问题。在实际的应用中,为了提高模型的泛化能力和降低过拟合风险,逻辑回归算法通常会使用正则化技术。本文将介绍逻辑回…...

Django按照文章ID删除文章

重点是‘文章的ID’作为参数,如何在各个部分传递。 1、在视图函数部分 login_required def article_list(request):articles ArticlePost.objects.filter(authorrequest.user)context {articles: articles, }return render(request, article/column/article_lis…...

Java | Leetcode Java题解之第136题只出现一次的数字

题目: 题解: class Solution {public int singleNumber(int[] nums) {int single 0;for (int num : nums) {single ^ num;}return single;} }...

文件系统小册(FusePosixK8s csi)【1 Fuse】

文件系统小册(Fuse&Posix&K8s csi)【1 Fuse:用户空间的文件系统】 Fuse(filesystem in userspace),是一个用户空间的文件系统。通过fuse内核模块的支持,开发者只需要根据fuse提供的接口实现具体的文件操作就可以实现一个文…...

ESP32读取DHT11温湿度数据

芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

高防服务器价格高原因分析

高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...