当前位置: 首页 > news >正文

使用Ollama+OpenWebUI本地部署Gemma谷歌AI开放大模型完整指南

🏡作者主页:点击! 

🤖AI大模型部署与应用专栏:点击!

🤖Ollama部署LLM专栏:点击!

⏰️创作时间:2024年6月4日10点50分

🀄️文章质量:96分


目录

💥Ollama介绍

➡️主要特点

➡️主要优点

🎊Gemma模型

➡️特点

🤖部署教程

1.下载Ollama

2.下载Gemma的大模型

主要版本及其特点

1. Gemma Latest

2. Gemma 7B

3. Gemma 2B

4. Gemma Instruct

5. Gemma Text

6. Gemma v1.1

🎁第一种下载方式

🎁第二种方式下载

🎁注意事项


💥Ollama介绍

Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。它提供了一套简单的工具和命令,使任何人都可以轻松地启动和使用各种流行的LLM,例如GPT-3、Megatron-Turing NLG和WuDao 2.0。

➡️主要特点


简化部署: Ollama 使用 Docker 容器技术来简化大型语言模型的部署和管理。用户只需简单的命令即可启动和停止模型,而无需担心底层的复杂性。

丰富的模型库: Ollama 提供了丰富的预训练模型库,涵盖了各种自然语言处理任务,如文本生成、翻译、问答等。用户可以轻松地选择和使用所需的模型。

跨平台支持: Ollama 支持多种操作系统,包括 Windows、macOS 和 Linux,使其能够满足不同用户的需求。

灵活的自定义: Ollama 提供了灵活的自定义选项,允许用户根据自己的需求调整模型的行为。

➡️主要优点


离线使用: Ollama 可以让用户在离线环境下使用LLM,这对于隐私敏感或网络连接不稳定的情况非常有用。

降低成本: Ollama 可以帮助用户降低使用LLM的成本,因为它避免了云服务的高昂费用。

提高安全性: Ollama 可以提高LLM使用的安全性,因为它允许用户完全控制自己的数据和模型。

应用场景
研究和教育: Ollama 可以用于自然语言处理、机器翻译、人工智能等领域的教学和研究。

开发和测试: Ollama 可以用于开发和测试新的自然语言处理应用程序。

个人使用: Ollama 可以用于个人创作、娱乐等目的

示例模型
以下只是部分模型:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi 3 Mini3.8B2.3GBollama run phi3
Phi 3 Medium14B7.9GBollama run phi3:medium
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Solar10.7B6.1GBollama run solar

🎊Gemma模型

谷歌的Gemma AI模型是一个多版本的开放式人工智能系统,旨在处理各种复杂的任务,如自然语言处理、计算机视觉、生成模型等。Gemma AI模型在不同版本之间具有不同的功能和性能,以满足不同的需求和计算资源。

➡️特点

高性能:Gemma在多个基准测试中展现出优秀的性能,能够生成高质量的自然语言内容。

多任务学习:Gemma通过在多个任务上进行联合训练,学习到了通用的语言理解和生成能力。

安全可靠:Gemma被设计具有较高的安全性,可以避免产生有害或不恰当的输出。

可解释性:Gemma模型的内部工作机制相对更加透明,便于理解和分析。

开放获取:Gemma模型的一些版本已经对外开放,研究人员和开发者可以获取使用。

🤖部署教程

1.下载Ollama

官网地址:点击跳转!

下一步默认下载即可过程十分简单就不演示了

2.下载Gemma的大模型

点击官网的右上角Models

选择对应的模型根你的电脑|服务器性能来选择,这里我选择7b的模型来测试

主要版本及其特点
1. Gemma Latest
  • 描述:最新版本的Gemma AI模型,包含最新的优化和改进。
  • 性能:通常是所有版本中性能最强的,能够处理最复杂的任务。
  • 应用场景:适用于需要高精度和高效率的任务,如实时语言翻译、复杂的对话系统、详细的文本分析等。
  • 硬件要求
    • CPU:多核高性能处理器(如Intel Xeon或AMD EPYC)
    • 内存:64GB RAM或更多
    • 存储:至少1TB的可用存储空间
    • GPU:顶级显卡
2. Gemma 7B
  • 描述:参数量为70亿的模型版本,平衡了性能和计算资源需求。
  • 性能:适合中等规模的任务,能够提供高质量的输出,但对计算资源的要求较低。
  • 应用场景:用于中等复杂度的任务,如高级文本生成、图像识别和中等规模的数据处理。
  • 硬件要求
    • CPU:八核处理器(如Intel i7或AMD Ryzen 7)
    • 内存:16GB RAM
    • 存储:至少200GB的可用存储空间
    • GPU:中高端显卡
3. Gemma 2B
  • 描述:参数量为20亿的模型版本,适用于基础的AI任务。
  • 性能:可以高效地处理基础任务,资源消耗较少。
  • 应用场景:适用于简单的文本生成、基础数据分析和基本对话系统。
  • 硬件要求
    • CPU:四核处理器(如Intel i5或AMD Ryzen 5)
    • 内存:8GB RAM
    • 存储:至少100GB的可用存储空间
    • GPU:入门级显卡
4. Gemma Instruct
  • 描述:专门优化用于指令跟随任务的模型版本。
  • 性能:在任务指令执行和精确回答问题方面表现优异。
  • 应用场景:用于构建高效的对话系统、问答系统和智能助理。
  • 硬件要求
    • CPU:六核处理器(如Intel i7或AMD Ryzen 5)
    • 内存:16GB RAM
    • 存储:至少150GB的可用存储空间
    • GPU:中端显卡(如NVIDIA RTX 3060)
5. Gemma Text
  • 描述:专注于文本生成和自然语言处理任务的模型版本。
  • 性能:在生成高质量文本和处理语言任务方面表现卓越。
  • 应用场景:用于自动写作、内容生成、文本摘要和语言翻译。
  • 硬件要求
    • CPU:六核处理器(如Intel i7或AMD Ryzen 5)
    • 内存:16GB RAM
    • 存储:至少150GB的可用存储空间
    • GPU:中端显卡
6. Gemma v1.1
  • 描述:Gemma模型的第一个主要版本更新,包含显著改进和优化。
  • 性能:相比初始版本具有更好的性能和更高的效率。
  • 应用场景:广泛应用于各类任务,包括文本生成、数据分析和对话系统。
  • 硬件要求
    • CPU:八核处理器(如Intel i7或AMD Ryzen 7)
    • 内存:16GB RAM
    • 存储:至少200GB的可用存储空间
    • GPU:中高端显卡

以上只作为参考建议,具体根据官网查

这里我选择7b的模型来测试

有两种下载方式你可以通过

🎁第一种下载方式

命令行(打开cmd)输入官网复制的命令

在命令行输入 以下命令 等待时长即可下载完成

ollama run gemma:7b

🎁第二种方式下载

基于OpenWebUI下载

首先需要安装Docker容器(自行了解安装,去官网下载步骤也是十分的简单)

复制这条命令( Ollama 在您的计算机上使用以下命令)

不同的条件下,有不同的命令,详细见开源地址所述

 官网地址:点击跳转!

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

等待完成即可

安装完成之后访问本地的3000端口

也可以点击自己的Docker,点击访问即可

先点击左下角的设置改为中文简体(方便观看)

点击模型这边下载Gemma 复制官网的运行地址也就是命令输入的命令

此刻只需等待完成即可

下载完成之后上边会显示(你所下载的大模型)

简单的提问

电脑性能越高回答的速度就越快

问题:谈谈你对于AI大爆发的看法

回答

工智能大爆发的看法:人工智能(AI)大爆发将对人类社会产生深远的影响,并带来各种机遇和挑战。积极影响:**提高生产力:**AI工具可以自动化许多任务,提高工作效率和生产力。**提高生活水平:**AI技术可以提供个性化医疗保健、交通和购物体验。**解决重大问题:**AI可以帮助解决全球性挑战,例如气候变化和疾病。**创造新就业机会:**AI技术将创造新的就业机会,以支持新技术和创新。负面影响:**就业损失:**AI工具可能会导致某些工作被自动化,并导致就业损失。**社会影响:**AI技术可能会导致社会分化和个人数据隐私问题。**伦理问题:**AI工具的应用引入了伦理问题,例如 bias 和可持续性。**人类社会:**AI技术可能会对人类社会产生深远的影响,并改变人类与机器的互动方式。可能性:**混合工作模式:**AI技术可以与人类工作相辅相成,以提高效率和生产力。**个人定制:**AI技术可以提供个性化产品和服务,以满足个人的需求和喜好。**社会协作:**AI技术可以帮助人类解决复杂的问题,并改善人类生活。结论:AI大爆发将对人类社会产生深远的影响,既有积极的影响也有负面影响。重要的是要负责任地应用 AI 技术,以最大限度地提高其益处,同时缓解潜在的风险。

可以看出回答的也是十分的全面详细,并且做出相应的总结

但是在回答问题的过程中会占用你的CPU和内存

🎁注意事项

根据电脑性能,来下载对应的大模型

如果是服务器的话,可根据开源地址所说明下载

相关文章:

使用Ollama+OpenWebUI本地部署Gemma谷歌AI开放大模型完整指南

🏡作者主页:点击! 🤖AI大模型部署与应用专栏:点击! 🤖Ollama部署LLM专栏:点击! ⏰️创作时间:2024年6月4日10点50分 🀄️文章质量&#xff1…...

react的自定义组件

// 自定义组件(首字母必须大写) function Button() {return <button>click me</button>; } const Button1()>{return <button>click me1</button>; }// 使用组件 function App() {return (<div className"App">{/* // 自闭和引用自…...

海宁代理记账公司-专业的会计服务

随着中国经济的飞速发展&#xff0c;企业的规模和数量日益扩大&#xff0c;在这个过程中&#xff0c;如何保证企业的财务活动合规、准确无误地进行&#xff0c;成为了每个企业面临的重要问题&#xff0c;专业、可靠的代理记账公司应运而生。 海宁代理记账公司的主要职责就是为各…...

matlab 计算三维空间点到直线的距离

目录 一、算法原理二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 直线的点向式方程为: x − x 0 m = y...

YOLOv5车流量监测系统研究

一. YOLOv5算法详解 YOLOv5网络架构 上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言&#xff0c;我们通常可以将其划分为4个通用的模块&#xff0c;具体包括&#xff1a;输入端、基准网络、Neck网络与Head输出端&#xff0c;对应于上图中的4个红色模块。Y…...

单元测试覆盖率

什么是单元测试覆盖率 关于其定义&#xff0c;先来看一下维基百科上的一段描述&#xff1a; 代码覆盖&#xff08;Code coverage&#xff09;是软件测试中的一种度量&#xff0c;描述程序中源代码被测试的比例和程度&#xff0c;所得比例称为代码覆盖率。 简单来理解&#xff…...

逻辑这回事(三)----时序分析与时序优化

基本时序参数 图1.1 D触发器结构 图1.2 D触发器时序 时钟clk采样数据D时&#xff0c;Tsu表示数据前边沿距离时钟上升沿的时间&#xff0c;MicTsu表示时钟clk能够稳定采样数据D的所要求时间&#xff0c;Th表示数据后边沿距离时钟上升沿的时间&#xff0c;MicTh表示时钟clk采样…...

[JAVASE] 类和对象(二) -- 封装

目录 一. 封装 1.1 面向对象的三大法宝 1.2 封装的基本定义与实现 二. 包 2.1 包的定义 2.2 包的作用 2.3 包的使用 2.3.1 导入类 2.3.2 导入静态方法 三. static 关键字 (重要) 3.1 static 的使用 (代码例子) 3.1.1 3.1.2 3.1.3 3.1.4 四. 总结 一. 封装 1.1 面向对象…...

开发网站,如何给上传图片的服务器目录授权

开发网站&#xff0c;上传图像时提示”上传图片失败&#xff0c;Impossible to create the root directory /var/www/html/xxxxx/public/uploads/avatar/20240608.“ 在Ubuntu上&#xff0c;你可以通过调整文件夹权限来解决这个问题。首先&#xff0c;确保Web服务器&#xff08…...

特别名词Test Paper2

特别名词Test Paper2 cabinet 橱柜cable 电缆&#xff0c;有线电视cafe 咖啡厅cafeteria 咖啡店&#xff0c;自助餐厅cage 笼子Cambridge 剑桥camel 骆驼camera 相机camp 露营campus 校园candidate 候选人&#xff0c;考生candle 蜡烛canteen 食堂capital 资金&#xff0c;首都…...

数据结构-AVL树

目录 二叉树 二叉搜索树的查找方式&#xff1a; AVL树 AVL树节点的实现 AVL树节点的插入操作 AVL树的旋转操作 右旋转&#xff1a; 左旋转&#xff1a; 左右双旋&#xff1a; 右左双旋&#xff1a; AVL树的不足和下期预告&#xff08;红黑树&#xff09; 二叉树 了…...

数字科技如何助力博物馆设计,强化文物故事表现力?

国际博物馆日是每年为了推广博物馆和文化遗产&#xff0c;而设立的一个特殊的日子&#xff0c;让我们可以深入探讨博物馆如何更好地呈现和保护我们的文化遗产&#xff0c;随着近年来的数字科技发展&#xff0c;其在博物馆领域的应用越来越广泛&#xff0c;它为博物馆提供了新的…...

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第七周) - 结构化预测

结构化预测 0. 写在大模型前面的话1. 词法分析 1.1. 分词1.2. 词性标注 2.2. 句法分析 2.3. 成分句法分析2.3. 依存句法分析 3. 序列标注 3.1. 使用分类器进行标注 4. 语义分析 0. 写在大模型前面的话 在介绍大语言模型之前&#xff0c;先把自然语言处理中遗漏的结构化预测补…...

5-Maven-setttings和pom.xml常用配置一览

5-Maven-setttings和pom.xml常用配置一览 setttings.xml配置 <?xml version"1.0" encoding"UTF-8"?> <settings xmlns"http://maven.apache.org/SETTINGS/1.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xs…...

input输入框设置样式

input清除自带样式 input, textarea,label, button,select,img,form,table,a{-webkit-tap-highlight-color: rgba(255,255,255,0);-webkit-tap-highlight-color: transparent;margin: 0;padding: 0;border: none; } /*去除iPhone中默认的input样式*/ input, button, select, t…...

平稳交付 20+ 医院,卓健科技基于 OpenCloudOS 的落地实践

导语&#xff1a;随着数字化转型于各个行业领域当中持续地深入推进&#xff0c;充当底层支撑的操作系统正发挥着愈发关键且重要的作用。卓健科技把 OpenCloudOS 当作首要的交付系统&#xff0c;达成了项目交付速度的提升、安全可靠性的增强、运维成本的降低。本文将会阐述卓健科…...

Python下载库

注&#xff1a;本文一律使用windows讲解。 一、使用cmd下载 先用快捷键win R打开"运行"窗口&#xff0c;如下图。 在输入框中输入cmd并按回车Enter或点确定键&#xff0c;随后会出现这个画面&#xff1a; 输入pip install 你想下载的库名&#xff0c;并按回车&…...

SAP HCM OPT函数作用

导读 INTRODUCTION OPT函数&#xff1a;SAP HCM工资核算是很多函数的汇总集&#xff0c;原有有兴趣问过SAP的人为什么SCHEMA需要这样设计&#xff0c;SAP的人说是用汇编的逻辑设计的&#xff0c;当时是尽可能用机器语言加速速度读取&#xff0c;每个函数都有对应的业务逻辑代码…...

Tensorflow音频分类

tensorflow https://www.tensorflow.org/lite/examples/audio_classification/overview?hlzh-cn 官方有移动端demo 前端不会 就只能找找有没有java支持 注意版本 注意JDK版本 package com.example.demo17.controller;import org.tensorflow.*; import org.tensorflow.ndarra…...

mqtt-emqx:keepAlive机制测试

mqtt keepAlive原理详见【https://www.emqx.com/zh/blog/mqtt-keep-alive】 # 下面开始写测试代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...