量化交易:Miniqmt获取可转债数据和交易python代码
哈喽,大家好,我是木头左!
低风险资产除了国债外,还有可转债,兼容有高收益的股性和低风险的债性,号称“下有保底,上不封顶”。
🔍 可转债:金融市场的双面娇娃
可转债,全称可转换债券,是一种可以在特定条件下转换为发行公司股票的债券。它既有债券的稳定收益特性,又有股票的增长潜力,是投资者进行资产配置的重要选择。
🎯 可转债的优势
- 收益与风险的平衡:既有固定收益,又有转股后的增值潜力。
- 市场适应性强:在不同的市场环境下,可转债都能展现出其独特的价值。
- 流动性好:可转债通常在交易所上市,流动性较高。
🛠️ miniQMT:量化交易的瑞士军刀
miniQMT可以不依赖QMT客户端,可以在vscode中直接运行,它提供了丰富的数据接口和交易策略模板,使得用户可以轻松地构建和测试自己的量化交易策略。
前面已经安装好QMT,参考QMT量化入门 ,在安装目录下有userdata_mini,这就是我们后面要用的Miniqmt的安装目录。

直接下载的可以用,最好是使用最新版本的,可从官网下载:https://dict.thinktrader.net/nativeApi/download_xtquant.html?id=7zqjlm

直接覆盖即可,不可以通过pip install的方式安装。
💻 Python代码
下面,我将展示如何使用Python和miniQMT来获取可转债数据。
🔬 获取可转债数据
获取行情主要是通过xtdata实现。
xtdata.download_history_data2(stock_list,period="1d",start_time="20240224") #批量下载
kline_data=xtdata.get_market_data(field_list=['time','open','high','low','close','volume','amount'],
print(res)
📊 连接客户端
如果要交易,本来还是要启miniQMT客户端,并配置资金帐户和安装目录。

否则会报错:

# coding:gbk
# @author : 木头左
# @date : 2024/06/03 22:18:26
# @description :
from xtquant import xtdata
import randomfrom xtquant.xttype import StockAccount
from xtquant.xttrader import XtQuantTrader
from xtquant import xtconstant# miniQMT安装路径
mini_qmt_path = r'E:\programData\qmt\userdata_mini'
# QMT账号
account = 'xx'
# 创建session_id
session_id = int(random.randint(100000, 999999))
# 创建交易对象
xt_trader = XtQuantTrader(mini_qmt_path, session_id)
# 启动交易对象
xt_trader.start()
# 连接客户端
connect_result = xt_trader.connect()
🚀 执行交易
最后,我们将委托提交客户端。
if connect_result == 0:print('连接成功')
# 创建账号对象
acc = StockAccount(account)
# 订阅账号
xt_trader.subscribe(acc)
# 下单
res = xt_trader.order_stock(acc, stock_code=stock_code, order_type=xtconstant.STOCK_BUY, order_volume=100, price_type=xtconstant.FIX_PRICE, price=7.44)
print(res)
希望这篇文章能够激发你对量化交易的兴趣。记得点赞、分享和关注哦!👍🔄👀
相关文章:
量化交易:Miniqmt获取可转债数据和交易python代码
哈喽,大家好,我是木头左! 低风险资产除了国债外,还有可转债,兼容有高收益的股性和低风险的债性,号称“下有保底,上不封顶”。 🔍 可转债:金融市场的双面娇娃 可转债&am…...
测试开发之自动化篇 —— 使用Selenium IDE录制脚本!
今天,我们开始介绍基于开源Selenium工具的Web网站自动化测试。 Selenium包含了3大组件,分别为:1. Selenium IDE 基于Chrome和Firefox扩展的集成开发环境,可以录制、回放和导出不同语言的测试脚本。 2. WebDriver 包括一组为不同…...
Django 外键关联数据
在设计数据库的时候,是得需要通过外键的形式将各个表进行连接。 原先的表是这样的 要想更改成这样: 下面是操作步骤: 有两张表是关联的 # 在 models.py 里创建class Department(models.Model):"""部门表""&quo…...
开源与新质生产力
在这个信息技术迅猛发展的时代,全球范围内的产业都在经历着深刻的变革。在这样的背景下,“新质生产力”的概念引起了广泛的讨论。无论是已经成为或正努力转型成为新质生产力的企业,都在寻求新的增长动力和竞争优势。作为一名长期从事开源领域…...
如何将 Windows图片查看器的背景颜色改成浅色(灰白色)?
现在大家基本都在使用Win10系统,我们在双击查看图片时,系统默认使用系统自带的图片(照片)查看器去打开图片。图片查看器的背景色默认是黑色的,如下所示:(因为大家可能会遇到同样的问题ÿ…...
k8s-pod参数详解
目录 概述创建Pod编写一个简单的Pod添加常用参数为Pod的容器分配资源网络相关Pod健康检查启动探针存活探针就绪探针 作用整个Pod参数配置创建docker-registry 卷挂载 结束 概述 k8s中的pod参数详解。官方文档 版本 k8s 1.27.x 、busybox:stable-musl、nginx:stable-alpine3…...
一些计算机网络面试题
TCP建立连接和关闭连接的流程?每个流程的环节? TCP是在传输层的协议,建立的是可靠传输 TCP在传输数据前建立连接是采用三次握手,关闭连接是四次挥手 三次握手:因为目前网络通讯是全双工的,那我假设浏览器…...
transformer - 注意力机制
Transformer 的注意力机制 Transformer 是一种用于自然语言处理任务的模型架构,依赖于注意力机制来实现高效的序列建模。注意力机制允许模型在处理一个位置的表示时,考虑输入序列中所有其他位置的信息,而不仅仅是前面的几个位置。这种机制能…...
三端植物大战僵尸杂交版来了
Hi,好久不见,最近植物大战僵尸杂交版蛮火的 那今天苏音整理给大家三端的植物大战僵尸杂交版包括【苹果端、电脑端、安卓端】 想要下载的直接划到最下方即可下载。 植物大战僵尸,作为一款古老的单机游戏,近期随着B站一位UP主潜艇…...
np.hstack()和np.vstack()函数解释
np.hstack()和np.vstack()函数解释 文章目录 1,np.hstack()1.1,代码1.2,结果 2,np.vstack()2.1,代码2.2,结果 3,np.hstack()和np.vstack()3.1,代码3.2,结果 1,…...
【Linux】进程5——进程优先级
1.进程优先级 1.1.什么是进程优先级 cpu资源分配的先后顺序,就是指进程的优先权(priority)。优先权高的进程有优先执行权利。配置进程优先权对多任务环境的linux很有用,可以改善系统性能。还可以把进程运行到指定的CPU上&#x…...
CNN简介与实现
CNN简介与实现 导语整体结构卷积层卷积填充步幅三维卷积立体化批处理 实现 池化层特点实现 CNN实现可视化总结参考文献 导语 CNN全称卷积神经网络,可谓声名远扬,被用于生活中的各个领域,也是最好理解的神经网络结构之一。 整体结构 相较于…...
【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构
目录 一、引言 二、自动模型类(AutoModel) 2.1 概述 2.2 Model Head(模型头) 2.3 代码示例 三、总结 一、引言 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预…...
Hadoop yixing(移行),新增表字段,删除表字段,修改存储格式
Hadoop yixing(移行),新增表字段,删除表字段,修改存储格式 一、hadoop中修改存储格式,比如从 textfile 转化为 orc 格式,表中的数据的组织形式要重新改变,就要将重新创建新格式的表将原来的数据按照新的格…...
使用汇编和proteus实现仿真数码管显示电路
proteus介绍: proteus是一个十分便捷的用于电路仿真的软件,可以用于实现电路的设计、仿真、调试等。并且可以在对应的代码编辑区域,使用代码实现电路功能的仿真。 汇编语言介绍: 百度百科介绍如下: 汇编语言是培养…...
【Unity】官方文档学习-光照系统
目录 1 前言 2 光照介绍 2.1 直接光与间接光 2.2 实时光照与烘焙光照 2.3 全局光照 3 光源 3.1 Directional Light 3.1.1 Color 3.1.2 Mode 3.1.3 Intensity 3.1.4 Indirect Multiplier 3.1.5 Shadow Type 3.1.6 Baked Shadow Angle 3.1.7 Realtime Shadows 3.1…...
1731. 每位经理的下属员工数量
1731. 每位经理的下属员工数量 题目链接:1731. 每位经理的下属员工数量 代码如下: # Write your MySQL query statement below select a.employee_id as employee_id,a.name as name,count(b.employee_id) as reports_count,round(avg(b.age),0) as av…...
特征筛选LASSO回归封装好的代码、数据集和结果
Gitee仓库地址:特征筛选LASSO回归封装好的代码、数据集和结果 README LassoFeatureSelector_main 这个是主函数文件,在实例化LassoFeatureSelector类时,需要传入下面这些参数: input_train_data_path:输入训练集的路…...
Autosar 通讯栈配置-手动配置PDU及Signal-基于ETAS软件
文章目录 前言System配置ISignalSystem SignalPduFrameISignal到System Signal的mapSystem Signal到Pdu的mapPdu到Frame的mapSignal配置Can配置CanHwFilterEcuC配置PduR配置CanIf配置CanIfInitCfgCanIfRxPduCfgCom配置ComIPduComISignalSWC配置Data mappingRTE接口Com配置补充总…...
Web前端工资调整:深入剖析与全面解读
Web前端工资调整:深入剖析与全面解读 在快速发展的互联网行业中,Web前端技术日新月异,而与之紧密相关的工资调整也成为了业内热议的话题。本文将从四个方面、五个方面、六个方面和七个方面,深入剖析Web前端工资调整的原因、趋势、…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
