借助ollama实现AI绘画提示词自由,操作简单只需一个节点!
只需要将ollama部署到本地,借助comfyui ollama节点即可给你的Ai绘画提示词插上想象的翅膀。具体看详细步骤!

第一步打开ollama官网:https://ollama.com/,并选择models显存太小选择的是llama3\8b参数的instruct-q6_k的这个模型。

运行方式也很简单,只要你网络没问题,直接在终端里,运行ollama run llama3:8b-instruct-q6_K这个命令,这样你可以在终端里llama3交流了!

当然咱们说的是在comfyui里运用llama3模型实现提示词自由的,所以我们需要安装comfy ollama节点,如图所示直接install即可

然后开始搭建ollama提示词节点,节点的提示词部分包含三个部分
第一部分汉译英过程:
命令提示词为:Translate the following into English, do not add any text other than the prompt:
其中节点:cr text concatenate是帮助字符串链接的一个节点!其中上面的是指令规则,下面的是要执行的具体指令。

You are a prompt engineer proficient in SDXL painting, especially skilled in refining prompts. Please strictly follow the steps below to refine the prompts that need to be refined, operate step by step and output the results of each step:Step 1: List the names and genders of all the characters in the prompt. If there are no characters in the prompt, skip this step.Step 2: Use a short phrase to describe all the characters in the prompt. This phrase can use plurals or and, do not use any punctuation. Do not use any punctuation in this short phrase. Do not use any punctuation in this short phrase. The format is as follows:
- 1boy
- 1girl
- 2boys
- 2girls
- 1girl and 1boyStep 3: Identify the main subjects in the prompt word. If you can guess which work it/them comes from, list the name of the work in the format:
- Link from The Legend of Zelda series, Spider-Man from Marvel movies, ...
If there is no prominent subject in the prompt, such as if the prompt is purely a landscape, skip this step.Step 4: Combine the contents of the previous two steps, separated by commas. If there is no prominent subject in the prompt, such as if the prompt is pure scenery, skip this step and do not output any characters.Step 5:
If the prompt contains a character, use the result from the previous step as the beginning, and creatively refine the rest of the prompt as a whole in English, 80 words,following the format: Number of characters and gender of characters, [character 1], [character 2], [character ...], everything else in any order. Examples of refined prompt:
- 1man, [young man with ((short gray hair)), black turtleneck sweater, suspenders, singing, smiling, holding a basketball, a pendant necklace], plain white wall background, focus on him and his actions, anime-style scene
- 2 girls, [one on the left wearing a gray T-shirt holding a laptop in her hand], [one on the right wearing a Wonder Woman costume], anime-style scene
- 1 boy and 1 girl, [Chun-Li from Street Fighter] and [Spider-Man from Marvel movies], engaged in a fierce battle, dynamic fighting poses, action movie poster
- 1 boy and 1 girl, [K-pop male singer (left of center) with short black hair, brown eyes, white color, formal suit with satin lapel and bow tie], [K-pop female singer (center) with long straight black hair, dark brown eyes, white color, formal silver dress], both singers holding hands up in peace signs, anime-style scene, bright colors, sunny backgroundIf the prompt does not contain a character but does contain a clear subject, use the result of the previous step as the beginning and use your imagination to refine the prompt as a whole. The language should be English and the format should be "subject name, everything else in any order."If the prompt does not contain a character or a clear subject, use your imagination to refine the prompt as a whole, in English.Step 6: Enclose the result of the previous step within # #Prompt that need refining:
这个规则大家感兴趣的话可以翻译成中文研究一下,生成逻辑,我坦白这个指令是抄作业抄来的!

这是第二步提示词命令生成的提示词,因为它根据指令,给出了每一步的生成过程所以,所以咱们不能把这样没有逻辑的提示词给comfy啊,经过观察真正生成的提示词结果是在##号内!所以有了第卅部!
第三步提取提示词:
是的我们要将##号内的提示词提取出来,提取提示词用这个指令

然后你只需要在最前面的cr text节点里输入你要,输入的指令,并把第三个comfyui ollama节点和正向提示词连接即可!

最后放一个祖传的1 girl美女,作为这篇文章的结束
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
相关文章:
借助ollama实现AI绘画提示词自由,操作简单只需一个节点!
只需要将ollama部署到本地,借助comfyui ollama节点即可给你的Ai绘画提示词插上想象的翅膀。具体看详细步骤! 第一步打开ollama官网:https://ollama.com/,并选择models显存太小选择的是llama3\8b参数的instruct-q6_k的这个模型。 运…...
PyTorch -- Visdom 快速实践
安装:pip install visdom 注:如果安装后启动报错可能是 visdom 版本选择问题 启动:python -m visdom.server 之后打开出现的链接 http://localhost:8097Checking for scripts. Its Alive! INFO:root:Application Started INFO:root:Working…...
基于xilinx FPGA的QSFP调试使用经验
1 概述 本文用于记录QSFP在调试使用时遇到的一些经验教训,防止后来者踩相同的坑。 参考手册: 《AMQ28-SR4-M1_V1.0》 《QSFP-DD-Hardware-rev4p0-9-12-18-clean》 2 QSFP简介 QSFP(Quad Small Form-facor Pluggable)即四通道SFP…...
WPF 使用Image控件显示图片
Source属性 Source属性用来告诉Image组件要展示哪张图片资源的一个入口,通常是图片的路径。也许是本地路径,也许是网络路径。 本地图片路径加载方式 使用相对路径,相对于工程目录的路径,当设置Width属性时,图片会等…...
合肥工业大学内容安全实验一:爬虫|爬新闻文本
✅作者简介:CSDN内容合伙人、信息安全专业在校大学生🏆 🔥系列专栏 :合肥工业大学实验课设 📃新人博主 :欢迎点赞收藏关注,会回访! 💬舞台再大,你不上台,永远是个观众。平台再好,你不参与,永远是局外人。能力再大,你不行动,只能看别人成功!没有人会关心你付…...
自动驾驶---Perception之视觉点云雷达点云
1 前言 在自动驾驶领域,点云技术的发展历程可以追溯到自动驾驶技术的早期阶段,特别是在环境感知和地图构建方面。 在自动驾驶技术的早期技术研究中,视觉点云和和雷达点云都有出现。20世纪60年代,美国MIT的Roberts从2D图像中提取3D…...
maven 显式依赖包包含隐式依赖包,引起依赖包冲突
问题:FlinkCDC 3.0.1 代码 maven依赖包冲突 什么是依赖冲突 依赖冲突是指项目依赖的某一个jar包,有多个不同的版本,因而造成类包版本冲突 依赖冲突的原因 依赖冲突很经常是类包之间的间接依赖引起的。每个显式声明的类包都会依赖于一些其它…...
Spring应用如何打印access日志和out日志(用于分析请求总共在服务耗费多长时间)
我们经常会被问到这样一个问题。你接口返回的好慢呀,能不能提升一下接口响应时间啊?这个时候我们就需要去分析,为什么慢,慢在哪。而这首先应该做的就是确定接口返回时间过长确实是在服务内消耗的时间。而不是我们将请求发给网关或…...
SpringBoot整合SpringDataRedis
目录 1.导入Maven坐标 2.配置相关的数据源 3.编写配置类 4.通过RedisTemplate对象操作Redis SpringBoot整合Redis有很多种,这里使用的是Spring Data Redis。接下来就springboot整合springDataRedis步骤做一个详细介绍。 1.导入Maven坐标 首先,需要导…...
电脑怎么录制游戏视频?轻松捕捉每一帧精彩
随着游戏产业的蓬勃发展,越来越多的玩家不仅满足于在游戏世界中的探索与冒险,更希望将自己的游戏精彩瞬间记录下来,分享给更多的朋友。可是电脑怎么录制游戏视频呢?本文旨在为广大游戏爱好者提供一份详细的电脑游戏视频录制攻略&a…...
【Elasticsearch】索引快照并还原到其他集群
【Elasticsearch】索引快照并还原到其他集群 前提:es节点的所有用户id和组id都需要相同,最好在新建集群时指定用户id和组id,否则挂载后执行curl时会提示权限报错。 解决方法(gpt生成),不敢在生产尝试。 点…...
QT--DAY1
不使用图形化界面实现一个登陆界面 #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {//设置窗口标题this->setWindowTitle("登录界面");//设置窗口大小this->resize(535,410);//固定窗口大小this->setFixedSize(535,410)…...
DSP教学实验箱_数字图像处理_操作教程:5-1 图像旋转
一、实验目的 学习图像旋转的原理,掌握图像的读取方法,并实现图像旋转。 二、实验原理 图像旋转 图像的旋转是指以图像的某一点为原点以逆时针或顺时针旋转一定的角度。其本质是以图像的中心为原点,将图像上的所有像素都旋转一个相同的角…...
MyBatis总结(2)- MyBatis实现原理(三)
核心配置 JavaBeanMapper.xml(sql映射) 作用 JavaBeanMapper.xml实现: 用来干什么? 定义Sql语句映射。相对照JDBC的实现,是将原本的Sql代码提取出来,最终根据映射关系执行Sql操作。 好处? 解…...
【保姆级教程】Linux 基于 Docker 部署 MySQL 和 Nacos 并配置两者连接
一、Linux 部署 Docker 1.1 卸载旧版本(如有) sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine1.2 安装 yum-utils 包 sudo yum install -y…...
Dev C++ 安装及使用方法教程-干活多超详细
Dev C 是一款非常好用,简约的C/C开发工具。可以减少很多创建工程的繁琐步骤,很快的进行开发。对于只用于来写代码的人来说,是比较轻量以及极速的。 Dev C 是一个windows下的c和c程序的集成开发环境。它使用mingw32/gcc编译器,遵循…...
无缝滚动的swiper
看效果 看代码 <swiper :indicator-dots"true" :autoplay"true" circular :interval"3000" :duration"6000" display-multiple-items"3" easing-function"linear"><swiper-item v-for"(item,indx…...
tvm实战踩坑
今天玩了一下tvm的安装 我要安装v0.14.0的版本 所以按照官网的方法 https://tvm.apache.org/docs/install/from_source.html#python-package-installation git clone --recursive https://github.com/apache/tvm tvmgit checkout v0.14.0recursive是很重要的 这一步可以替换成…...
计算机网络之网络层知识总结
网络层功能概述 主要任务 主要任务是把分组从源端传到目的端,为分组交换网上的不同主机提供通信服务。网络层传输单位是数据报。 分组和数据报的关系:把数据报进行切割之后,就是分组。 主要功能: 路由选择与分组转发 路由器…...
利用穿戴甲虚拟试戴技术提高销量和参与度
在不断变化的美容行业,保持领先意味着拥抱创新技术。其中一项改变游戏规则的技术是人工智能驱动的虚拟指甲试戴。在穿戴甲领域,不断兴起的虚拟试戴技术对促进销售和参与度产生了重大影响。 视觉吸引力的力量 要了解虚拟试戴的重要性,必须了解…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
