支持向量机(SVM): 从理论到实践的指南(2)
葡萄酒数据集经常被用于机器学习、模式识别和统计分类算法的测试中。由于其特征维度较高,非常适合于验证特征选择和降维方法,例如主成分分析(PCA)或线性判别分析(LDA)的效果。同时,由于数据集包含多个分类,它也经常被用作分类算法(如决策树、随机森林、支持向量机等)的标准测试集。
前篇我们讲述了用SVM做鸢尾花二分类识别器,本篇我们用前篇相似的代码,更换一个维度更高的数据进行测试。
葡萄酒分类:葡萄酒数据集是另一个分类问题,但特征数量增至13个。任务是根据化学组份将葡萄酒分为两个不同的类别。
数据示例:用SVM做葡萄酒二分类识别器
问题和数据说明
这里数据截取自wine数据,根据13维的描述数值,识别葡萄酒的类别。由于本文讲述二分类,我们在3种类别中选取两种类别,标签变更为1和-1,整理得到数据data/wine_data.csv。
部分数据如下:
label | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | f9 | f10 | f11 | f12 | f13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14.23 | 1.71 | 2.43 | 15.6 | 127 | 2.8 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065 |
1 | 13.2 | 1.78 | 2.14 | 11.2 | 100 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.4 | 1050 |
1 | 13.16 | 2.36 | 2.67 | 18.6 | 101 | 2.8 | 3.24 | 0.3 | 2.81 | 5.68 | 1.03 | 3.17 | 1185 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … |
-1 | 13.27 | 4.28 | 2.26 | 20 | 120 | 1.59 | 0.69 | 0.43 | 1.35 | 10.2 | 0.59 | 1.56 | 835 |
-1 | 13.17 | 2.59 | 2.37 | 20 | 120 | 1.65 | 0.68 | 0.53 | 1.46 | 9.3 | 0.6 | 1.62 | 840 |
-1 | 14.13 | 4.1 | 2.74 | 24.5 | 96 | 2.05 | 0.76 | 0.56 | 1.35 | 9.2 | 0.61 | 1.6 | 560 |
源码
MindOpt团队开发的代数建模语言MAPL(MindOpt Algebra Programming Language, MindOptAPL,简称为MAPL),可以用来编码上面的问题,并且调用求解器进行求解。
MAPL的V2.4版本上新了向量化建模的语法,可以方便地实现矩阵的转置、矩阵乘法等功能,详情>>。
完整代码如下:
clear model;####################################################
#
# Vectorization Modeling Example
# Linear SVM
#
####################################################option modelname svm_03; #定义存储文件名# ----------建模--------Start----
# svm_02.mapl# 1.读取iris的用于构建SVM模型的训练数据
param data_dir = "./data/wine_data-train.csv";
param X = read_csv( data_dir, use_col="1,2,3,4,5,6,7,8,9,10,11,12,13",skip=1);
param y = read_csv( data_dir, use_col=0,skip=1);
param dataNum = X.row;
param dataDim = X.col;
print "总共有{}个数据,每个数据有{}维"%dataNum,dataDim;# 2.LinearSVM问题建模
param C_rho = 0.2;
print "Param C is :{}"%C_rho;print "Start modeling-------";var w(dataDim) >= -1 <= 1; # Bounded Model Parameter
var b; #
var eps(dataNum) >= 0;minimize 1/2 * w' * w + C_rho * sum(eps); #'是转置,目标函数subto constraint:eps >= 1 - (X*w +b).*y; #注意是向量化建模,因此相当于多条维度的约束# 3.调用求解器求解
print "Start solving-------";
option solver mindopt;
solve;# 4. 超平面的w取值
print "- Optimal w is:";
print w;
print "- Optimal b is:";
print b;
print "- eps is:";
forall { i in 0..dataNum-1 with eps[i] > 0.001}print " - eps[{}] = {} "%i,eps[i];param obj_total_loss = 1/2 * w' * w + C_rho * sum(eps); #'是转置
print "- obj of total loss is : {}"%obj_total_loss;# 5.验证并分析结果print "";
print "验证结果:-----";param correctNum = sum{i in 0..dataNum-1} if((sum{j in 0..dataDim-1}w[j]*X[i, j]) +b )* y[i] > 0 then 1 else 0 end;
param precision = correctNum / dataNum;
print "- Precision for train data is : {:.2f}" % precision;#
print "";
print "导入测试数据验证效果:-----";param data_dir_test = "./data/wine_data-test.csv";
param X_test = read_csv( data_dir_test, use_col="1,2,3,4,5,6,7,8,9,10,11,12,13",skip=1);
param y_test = read_csv( data_dir_test, use_col=0,skip=1);
param dataNum_test = X_test.row;
param dataDim_test = X_test.col;
print "- 总共有{}个数据,每个数据有{}维"%dataNum_test,dataDim_test;print "|测试数据ID|实际标签|SVM预测标签是|";
print "|--|--|--|";
forall {i in 0..dataNum_test-1}
print "|{}|{}|{}|"%i,y_test[i], if((sum{j in 0..dataDim_test-1}w[j]*X_test[i, j]) +b ) > 0 then 1 else -1 end;
运行上述代码结果如下:
总共有87个数据,每个数据有13维
Param C is :0.2
Start modeling-------
Start solving-------
Running mindoptampl
wantsol=1
MindOpt Version 1.2.1 (Build date: 20240428)
Copyright (c) 2020-2024 Alibaba Cloud.Start license validation (current time : 29-APR-2024 17:51:15).
License validation terminated. Time : 0.007sModel summary.- Num. variables : 101- Num. constraints : 87- Num. nonzeros : 1305- Bound range : [1.0e+00,1.0e+00]- Quad. bound range : [1.0e+00,1.0e+00]- Objective range : [2.0e-01,2.0e-01]- Quad. obj. range : [1.0e+00,1.0e+00]- Matrix range : [1.7e-01,1.7e+03]Presolver started.
Presolver terminated. Time : 0.001sInterior point method started.Iter PrimObj DualObj PrimFea DualFea GapFea Mu Time0 +3.80399778e-01 -7.55707692e-01 1.9e-02 1.1e-02 1.1e+00 4.6e-03 0.02s1 +1.79640739e-01 -2.13996063e-01 8.2e-03 5.0e-03 3.9e-01 1.5e-03 0.03s2 +1.17952681e-01 -1.13914883e-01 5.2e-03 2.0e-02 2.3e-01 7.1e-04 0.03s3 +3.61389193e-02 -2.62084850e-02 1.5e-03 5.8e-03 6.2e-02 2.0e-04 0.04s4 +3.41691834e-02 -2.09031242e-02 1.4e-03 5.1e-03 5.5e-02 1.9e-04 0.04s5 +3.40036247e-02 +5.83432924e-02 1.3e-03 2.2e-02 4.6e-02 2.3e-04 0.04s6 +8.36408587e-02 -4.76077416e-01 8.4e-04 7.9e-02 5.6e-01 2.1e-04 0.04s7 +1.25803855e-01 +1.83665783e-01 5.0e-04 1.8e-02 5.8e-02 2.9e-04 0.05s8 +2.08232448e-01 +3.51342692e-01 1.1e-04 1.7e-02 1.4e-01 9.2e-05 0.05s9 +2.24640702e-01 +3.15349667e-01 5.2e-05 1.6e-02 9.1e-02 5.4e-05 0.05s10 +2.38702568e-01 +2.37176375e-01 1.4e-07 3.5e-04 2.6e-03 1.3e-05 0.05s11 +2.36599665e-01 +2.36546454e-01 4.5e-10 2.0e-06 6.0e-05 3.0e-07 0.05s12 +2.36550609e-01 +2.36550442e-01 1.2e-12 5.5e-09 1.8e-07 9.2e-10 0.06s13 +2.36550464e-01 +2.36550464e-01 1.5e-16 1.3e-11 4.3e-11 3.5e-14 0.06s
Terminated.- Method : Interior point method.- Primal objective : 2.3655046415330E-01- Dual objective : 2.3655046419623E-01- Num. threads : 4- Num. iterations : 13- Solver details : Solver terminated with a primal/dual optimal status.Interior point method terminated. Time : 0.046sOPTIMAL; objective 0.24
0 simplex iterationsCompleted.
- Optimal w is:
[[ 0.04857],[ 0.01247],[ 0.05512],[-0.13231],[ 0.02318],[ 0.27035],[ 0.46883],[-0.01722],[ 0.13966],[-0.17157],[ 0.06461],[ 0.32124],[ 0.00143]]
- Optimal b is:
-3.307435311971387
- eps is:
- obj of total loss is : 0.23655046415329972验证结果:-----
- Precision for train data is : 1.00导入测试数据验证效果:-----
- 总共有20个数据,每个数据有13维
|测试数据ID|实际标签|SVM预测标签是|
|--|--|--|
|0|1|1|
|1|1|1|
|2|1|1|
|3|1|1|
|4|1|1|
|5|1|1|
|6|1|1|
|7|1|1|
|8|1|1|
|9|1|1|
|10|-1|-1|
|11|-1|-1|
|12|-1|-1|
|13|-1|-1|
|14|-1|-1|
|15|-1|-1|
|16|-1|-1|
|17|-1|-1|
|18|-1|-1|
|19|-1|-1|
结果解析
运行结果如下:
总共有87个数据,每个数据有13维 Param C is :0.2
……
- Optimal w is: [[ 0.04857], [ 0.01247], [ 0.05512], [-0.13231], [ 0.02318], [ 0.27035], [ 0.46883], [-0.01722], [ 0.13966], [-0.17157], [ 0.06461], [ 0.32124], [ 0.00143]]
- Optimal b is: -3.3074353121126
- eps is:
- obj of total loss is : 0.23655046414945333
验证结果:-----
- Precision for train data is : 1.00
导入测试数据验证效果:-----
- 总共有20个数据,每个数据有13维
测试数据ID | 实际标签 | SVM预测标签是 |
---|---|---|
0 | 1 | 1 |
1 | 1 | 1 |
2 | 1 | 1 |
3 | 1 | 1 |
4 | 1 | 1 |
5 | 1 | 1 |
6 | 1 | 1 |
7 | 1 | 1 |
8 | 1 | 1 |
9 | 1 | 1 |
10 | -1 | -1 |
11 | -1 | -1 |
12 | -1 | -1 |
13 | -1 | -1 |
14 | -1 | -1 |
15 | -1 | -1 |
16 | -1 | -1 |
17 | -1 | -1 |
18 | -1 | -1 |
19 | -1 | -1 |
可以看到,我们使用通用MindOpt求解器,也能实现SVM“训练”葡萄酒的分类器。
相关文章:
支持向量机(SVM): 从理论到实践的指南(2)
葡萄酒数据集经常被用于机器学习、模式识别和统计分类算法的测试中。由于其特征维度较高,非常适合于验证特征选择和降维方法,例如主成分分析(PCA)或线性判别分析(LDA)的效果。同时,由于数据集包…...
PDF格式分析(八十六)——修订注释(Redaction)
修订注释(PDF 1.7及其以上版本),该注释的做用是标识要从文档中删除的内容。 修订注释启用的步骤如下: 1、内容标识。PDF编辑器可指定应删除的文档内容片段或区域,在执行下一个步骤前,用户可以看到、移动和重新定义这些注释。 2、内容移除。PDF阅读器应删除修订注释指…...
【python】flask中Session忽然取不到存储内容怎么办?
尚未确定,后续更新,先别以此为准。 【背景】 用flask写的Web应用,运行不正常,查看原因,发现视图函数a中设定的session内容在视图函数b忽然拿不到了。 【分析】 这个应用在两个服务器间互相Hook,因此可能涉及跨域的问题。 视图函数a设置的session,再次从前端调用视图…...

05-腾讯云Copilot及 向量数据库AI套件介绍
1 Andon Copilot核心功能介绍 2 Andon Copilot覆盖腾讯云售后、售前场景 3 腾讯云向量数据库– AI套件效果 AI 套件是腾讯云向量数据库(Tencent Cloud VectorDB)提供的一站式文档检索解决方案,包含自动化文档解析、信息补充、向量化、内容检…...
软件版本库管理工具
0 Preface/Foreword 常用代码版本管理工具包括如下几种: Git,最基本管理工具,由Linux kernel开发者开发Repo,主要用于管理Android SDK,由Google开发Gerrit,代码审查软件 1 Git 最基本的代码版本库管理工…...

LVS负载均衡集群企业级应用实战-LVS/NAT模式(三)
目录 LVS/NAT模式 一. 环境准备 二. 对虚拟服务器操作 三. 对真实服务器操作 四. 打开网站验证 LVS/NAT模式 一. 环境准备 统一关闭防火墙和selinux,时间同步,配置好YUM源系统发行版选择会用就可以,这里也是两种一起使用学习。用的不同系…...
在Spring中如何手动开启事务(使用编程式事务)
这里写自定义目录标题 一、使用 transactionManager1、向容器中注入事务管理器2、使用 transactionManager 提交事务3、测试 二、使用TransactionTemplate1、向容器中注入 TransactionTemplate2、开启事务 一、使用 transactionManager 1、向容器中注入事务管理器 Configurat…...
cv的优势
计算机视觉(CV)技术是一种通过计算机对图像、视频等视觉数据进行分析和理解的技术。它在多个领域有着广泛的应用,包括图像识别、目标检测、人脸识别、无人驾驶等。下面是一些计算机视觉技术的优势和挑战的例子: 优势:…...

基于某评论的TF-IDF下的LDA主题模型分析
完整代码: import numpy as np import re import pandas as pd import jieba from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import LatentDirichletAllocationdf1 pd.read_csv(小红书评论.csv) # 读取同目录下csv文件…...
四、Nginx配置文件-负载均衡
目录 一、负载均衡的作用 二、负载均衡状态 三、负载均衡的指令 1、upstream 指令 2、server指令 四、负载均衡几种方式 1、轮询(Round Robin 常用) 2、IP Hash (较少) 3、最少连接数(Least Connections 较少&…...

ofd文件预览
文件列表 <template><div><div classfile v-if$myUtils.coll.isNotEmpty(filesList)><div classfile-view><div classfile-view-item :style{justifyContent: align } v-for(item, index) in filesList :keyindex><img classfile-view-item-…...
浅浅了解下Spring中生命周期函数(Spring6全攻略)
你好,这里是codetrend专栏“Spring6全攻略”。 Spring框架设计生命周期回调函数的主要目的是为了提供一种机制,使开发人员能够在对象创建、初始化和销毁等生命周期阶段执行特定的操作。这种机制可以帮助开发人员编写更加灵活和可维护的代码。 举个例子…...

建议收藏!亚马逊卖家必须知道的37个常用术语解释
运营亚马逊,经常会看到很多个专业术语,想必大部分新手卖家都比较陌生,熟悉这些常用术语的含义有助于你更好地运营亚马逊。下面为各位整理了37个在亚马逊跨境电商中常见的术语及其解释,建议收藏! 1、SKU Stock Keeping…...

黑苹果睡眠总是自动唤醒(RTC)
黑苹果睡眠总是自动唤醒【RTC】 1. 问题2. 解决方案2.1. 查看重启日志2.2. 配置Disable RTC wake scheduling补丁 3. 后续4. 参考 1. 问题 黑苹果EFI 更换后,总是在手动 睡眠后,间歇性重启,然后再次睡眠,然后再重启。原因归结为&…...
【代码随想录训练营】【Day 49+】【动态规划-8】| Leetcode 121, 122, 123
【代码随想录训练营】【Day 49】【动态规划-8】| Leetcode 121, 122, 123 需强化知识点 买卖股票系列 题目 121. 买卖股票的最佳时机 动态规划贪心:记录左侧的最小值 class Solution:def maxProfit(self, prices: List[int]) -> int:# n len(prices)# # 0…...

k8s metrics-server服务监控pod 的 cpu、内存
项目场景: 需要开启指标服务,依据pod 的 cpu、内存使用率进行自动的扩容或缩容 pod 的数量 解决方案: 下载 metrics-server 组件配置文件: wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/…...

电脑自带录屏在哪?电脑录屏,4个详细方法
在现代社会中,越来越多的人需要在电脑上录制视频,比如录制游戏操作、制作教学视频、演示文稿等等。因此,电脑录屏成为了一项非常重要的功能。那么电脑自带录屏在哪?本文将带领大家看看可以使用哪些方法进行录屏。 录屏方法一&…...

[Cloud Networking] Layer3 (Continue)
文章目录 1. DHCP Protocol1.1 DHCP 三种分配方式1.2 DHCP Relay (中继) 2. 路由协议 (Routing Protocol)2.1 RIP (Routing Information Protocol)2.2 OSPF Protocol2.2.1 OSPF Area2.2.2 Route ID / DR / BDR2.2.3 LSA / OSPF 邻居表 / LSDB / OSPF路由表 2.3 BGP Protocol2.4…...

missing authentication credentials for REST request
1、报错截图 2、解决办法 将elasticsearch的elasticsearch.yml的 xpack.security.enabled: true 改为 xpack.security.enabled: false...

Unity 从0开始编写一个技能编辑器_02_Buff系统的生命周期
工作也有一年了,对技能编辑器也有了一些自己的看法,从刚接触时的惊讶,到大量工作时觉得有一些设计的冗余,在到特殊需求的修改,运行效率低时的优化,技能编辑器在我眼中已经不再是神圣不可攀的存在的…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...