Java多线程-StampedLock(原子读写锁)
StampedLock 是读写锁的实现,对比 ReentrantReadWriteLock 主要不同是该锁不允许重入,多了乐观读的功能,使用上会更加复杂一些,但是具有更好的性能表现。StampedLock 的状态由版本和读写锁持有计数组成。 获取锁方法返回一个邮戳,表示和控制与锁状态相关的访问; 这些方法的“尝试”版本可能会返回特殊值 0 来表示获取锁失败。 锁释放和转换方法需要邮戳作为参数,如果它们与锁的状态不匹配则失败。
但是也是由于 StampedLock 大量使用自旋的原因(ReentrantReadWriteLock 也使用了自旋,但是没有 StampedLock 频繁),CPU 的消耗理论上也比 ReentrantReadWriteLock 高。
StampedLock 非常适合写锁中的操作非常快的业务场景。因为读锁如果因为写锁而获取锁失败,读锁会做重试获取和有限次的自旋的方式,比较晚进入到等待队列中。如果在自旋过程中,写锁能释放,那么获取读锁的线程就能避免被操作系统阻塞和唤醒等耗资源操作,增加读锁的响应效率。
三种模式
悲观读锁
与 ReentrantReadWriteLock 的读锁类似,多个线程可以同时获取悲观读锁。这是一个共享锁,允许多个线程同时读取共享资源。
乐观读锁
相当于直接操作数据,不加任何锁。在操作数据前并没有通过 CAS 设置锁的状态,仅仅通过位运算测试。如果当前没有线程持有写锁,则简单地返回一个非 0 的 stamp 版本信息。返回 0 则说明有线程持有写锁。获取该 stamp 后在具体操作数据前还需要调用 validate 方法验证该 stamp 是否己经不可用。
写锁
与 ReentrantReadWriteLock的写锁类似,写锁和悲观读锁是互斥的。虽然写锁与乐观读锁不会互斥,但是在数据被更新之后,之前通过乐观读锁获得的数据已经变成了脏数据,需要自己处理这个。
StampedLock 的读写锁都是不可重入锁,所以在获取锁后释放锁前不应该再调用会获取锁的操作,以避免造成调用线程被阻塞。
在实际应用中,StampedLock 可以用于那些读操作远多于写操作的场景,例如缓存系统、数据报表生成等。在这些场景中,StampedLock 可以显著提高并发性能,同时保证数据的一致性和安全性。
最重要的一点: 在使用时需要特别注意:如果某个线程阻塞在StampedLock的readLock()或者writeLock()方法上时,此
时调用阻塞线程的interrupt()方法中断线程,会导致CPU飙升到100%。
所以尽量在写操作是非常快的场景下使用, 这样读的时候乐观锁释放的非常快,几乎达到无锁模式。
所有接口方法



经典案例
import java.util.concurrent.locks.StampedLock;public class StampedLockExample {private int inventory = 100; // 初始库存为100private final StampedLock lock = new StampedLock();// 扣减库存操作public void decreaseInventory(int quantity) {long stamp = lock.writeLock(); // 获取写锁try {if (inventory >= quantity) {inventory -= quantity; // 扣减库存System.out.println("成功减少库存 " + quantity + ", 当前的库存量: " + inventory);} else {System.out.println("未能减少库存,库存不足");}} finally {lock.unlockWrite(stamp); // 释放写锁}}// 获取当前库存public int getInventory() {long stamp = lock.tryOptimisticRead(); // 乐观读锁int currentInventory = inventory;if (!lock.validate(stamp)) { // 检查乐观读锁是否有效stamp = lock.readLock(); // 乐观读锁无效,转为悲观读锁try {currentInventory = inventory; // 获取当前库存} finally {lock.unlockRead(stamp); // 释放读锁}}return currentInventory; // 返回当前库存}public static void main(String[] args) {StampedLockExample manager = new StampedLockExample();// 多个线程同时扣减库存Thread t1 = new Thread(() -> {manager.decreaseInventory(20); // 线程1扣减库存System.out.println(manager.getInventory());});Thread t2 = new Thread(() -> {manager.decreaseInventory(50); // 线程2扣减库存System.out.println(manager.getInventory());});t1.start();t2.start();}
}
官网案例
public class Point {private double x, y;private final StampedLock sl = new StampedLock();public void move(double deltaX, double deltaY) {使用写锁-独占操作,并返回一个邮票long stamp = sl.writeLock();try {x += deltaX;y += deltaY;} finally {使用邮票来释放写锁sl.unlockWrite(stamp); }}// 使用乐观读锁访问共享资源// 注意:乐观读锁在保证数据一致性上需要拷贝一份要操作的变量到方法栈,并且在操作数据时候可能其 // 他写线程已经修改了数据,而我们操作的是方法栈里面的数据,也就是一个快照,所以最多返回的不是 // 最新的数据,但是一致性还是得到保障的。public double distanceFromOrigin() {使用乐观读锁-并返回一个邮票,乐观读不会阻塞写入操作,从而解决了写操作线程饥饿问题。long stamp = sl.tryOptimisticRead(); 拷贝共享资源到本地方法栈中double currentX = x, currentY = y; if (!sl.validate(stamp)) { 如果验证乐观读锁的邮票失败,说明有写锁被占用,可能造成数据不一致,所以要切换到普通读锁模式。stamp = sl.readLock(); try {currentX = x;currentY = y;} finally {sl.unlockRead(stamp);}}// 如果验证乐观读锁的邮票成功,说明在此期间没有写操作进行数据修改,那就直接使用共享数据。return Math.sqrt(currentX * currentX + currentY * currentY);}// 锁升级:读锁--> 写锁public void moveIfAtOrigin(double newX, double newY) { // upgrade// Could instead start with optimistic, not read modelong stamp = sl.readLock();try {while (x == 0.0 && y == 0.0) {读锁转换为写锁long ws = sl.tryConvertToWriteLock(stamp); if (ws != 0L) {如果升级到写锁成功,就直接进行写操作。stamp = ws;x = newX;y = newY;break;} else {//如果升级到写锁失败,那就释放读锁,且重新申请写锁。sl.unlockRead(stamp);stamp = sl.writeLock();}}} finally {//释放持有的锁。sl.unlock(stamp);}}}
StampedLock和ReentrantReadWriteLock之间的区别
- 锁的类型与特性:
- StampedLock:提供了乐观读、悲观读和写锁三种模式。乐观读模式允许在写锁未被持有时进行无锁读取,通过验证戳记(stamp)来确保数据的一致性。这种模式减少了锁的竞争,提高了吞吐量。
- ReentrantReadWriteLock:允许多个读线程同时访问,但写线程在访问时必须独占。它支持锁的重入,即同一线程可以多次获取同一把锁。
- 性能:
- StampedLock:通常比ReentrantReadWriteLock具有更高的性能,特别是在读多写少的场景下。由于乐观读的存在,它能够在无竞争的情况下避免不必要的锁开销。
- ReentrantReadWriteLock:在读操作远多于写操作的场景中表现良好,但写锁的饥饿问题和锁降级操作可能影响其性能。
- 实现机制:
- StampedLock:并非基于AQS(AbstractQueuedSynchronizer)实现,而是使用了自己的同步等待队列和状态设计。其状态为一个long型变量,与ReentrantReadWriteLock的设计不同。
- ReentrantReadWriteLock:基于AQS实现,通过内部维护的读写锁来实现多线程间的同步。
- 使用场景:
- StampedLock:更适合于读多写少且对性能要求较高的场景,尤其是当数据争用不严重时。它能够有效减少锁的竞争,提高系统的吞吐量。
- ReentrantReadWriteLock:适用于需要重入锁或需要在写操作后降级为读锁的场景。它提供了更严格的访问控制,但可能在某些情况下牺牲了一定的性能。
- 锁的获取与释放:
- StampedLock:在获取锁时会返回一个戳记(stamp),用于后续的锁释放或转换。这个戳记代表了锁的状态,有助于在释放锁时验证数据的一致性。
- ReentrantReadWriteLock:没有戳记的概念,锁的获取和释放相对简单直接。
综上所述,StampedLock和ReentrantReadWriteLock各有其特点和适用场景。在选择使用哪种锁时,应根据具体的应用需求和性能要求来做出决策。
相关文章:
Java多线程-StampedLock(原子读写锁)
StampedLock 是读写锁的实现,对比 ReentrantReadWriteLock 主要不同是该锁不允许重入,多了乐观读的功能,使用上会更加复杂一些,但是具有更好的性能表现。StampedLock 的状态由版本和读写锁持有计数组成。 获取锁方法返回一个邮戳&…...
(源码)一套医学影像PACS系统源码 医院系统源码 提供数据接收、图像处理、测量、保存、管理、远程医疗和系统参数设置等功能
PACS系统还提供了数据接收、图像处理、测量、保存、管理、远程医疗和系统参数设置等功能。 PACS系统提高了医学影像的利用率和诊疗效率,为医生提供了更加准确和及时的诊断依据。它是医院信息化的必备系统之一,已经成为医学影像管理和传输的重要工具。 P…...
【Qt 学习笔记】Qt窗口 | 对话框 | 创建自定义对话框
博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Qt窗口 | 对话框 | 创建自定义对话框 文章编号:Qt 学习笔记…...
# RocketMQ 实战:模拟电商网站场景综合案例(五)
RocketMQ 实战:模拟电商网站场景综合案例(五) 一、mybatis 逆向工程使用 4、逆向工程 生成 的 .xml 配置文件。 4.1、生成的 TradeCouponMapper.xml 文件。 <?xml version"1.0" encoding"UTF-8" ?> <!DOC…...
Cesium4Unreal - # 009 直接加载显示shapefile
文章目录 直接加载显示shapefile1 思路2 步骤2.1 下载shapelib2.2 添加依赖模块2.3 创建Actor2.3.1 MyShapeLoaderActor.h2.3.2 MyShapeLoaderActor.cpp2.3 蓝图代码直接加载显示shapefile 1 思路 在Unreal Engine中加载显示shapefile无非就是从shapefile中读取几何数据,并且…...
Release和Debug的区别?Release有什么好处?【面试】
Release和Debug的区别: 优化:Debug版本通常不进行优化,以便更容易调试;Release版本则经过高度优化,以提高性能。调试信息:Debug版本包含详尽的调试信息,如符号信息和源代码映射;Rel…...
DevExpress 控件和库
UI控件和组件 DevExpress WinForms包括以下Windows窗体库和控件: Grids and Editors Data Grid Tree List Vertical Grid Property Grid Gantt Control Data Editors and Simple Controls Office-inspired Ribbon, Bars and Menu Rich Text Editor Scheduler S…...
车载以太网测试
一、车载以太网的发展 IEEE: 电气与电子工程师协会,其中IEEE802.3工作小组致力于推进以太网相关标准的制定与完善,其发展主要经过一下三个阶段: 1.诊断/程序更新 2.智驾座舱 3.主干网 二、车载以太网协议(OSI七层模型&#x…...
181.二叉树:验证二叉树(力扣)
代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* Tre…...
陪诊小程序开发,陪诊师在线接单
近几年,陪诊师成为了一个新兴行业,在科技时代中,陪诊小程序作为互联网下的产物,为陪诊市场带来了更多的便利。 当下生活压力大,老龄化逐渐严重,年轻人很难做到陪同家属看病。此外,就诊中出现了…...
【全开源】Java无人共享棋牌室茶室台球室系统JAVA版本支持微信小程序+微信公众号
无人共享棋牌室系统——棋牌娱乐新体验 🎲引言 随着科技的不断发展,传统棋牌室正逐渐迈向智能化、无人化。今天,我要为大家介绍的就是这款引领潮流的“无人共享棋牌室系统”。它不仅为棋牌爱好者提供了全新的娱乐体验,更在便捷性…...
2024-6-10-zero shot,few shot以及无监督学习之间的关系是什么
Zero-shot learning、few-shot learning和无监督学习都是机器学习中的方法,它们共同的特点是在有限或没有标签数据的情况下进行学习。下面是这三种方法之间的关系和区别: Zero-shot Learning (零样本学习): 零样本学习是在模型训练过程中完全…...
C语言|十进制数转换任意进制数
将十进制数转换成任意进制数。 思路分析: 先举一个具体的例子:十进制转换为二进制数 1 定义一个数组a[100],先归0,再存放运算过程中的余数 2 定义变量m, 先存放键盘上输入的十进制数 3 定义变量R 表示几进制数,循环变量…...
驱动开发(二):创建字符设备驱动
往期文章: 驱动开发(一):驱动代码的基本框架 驱动开发(二):创建字符设备驱动 ←本文 目录 字符驱动设备的作用 函数 字符驱动设备注册和注销 注册 注销 自动创建设备节点 创建class类…...
Golang:使用时会遇到的错误及解决方法详解
Go语言使用时常常会遇到的一些错误及解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下 1、go: go.mod file not found in current directory or any parent directory go mod init name 2、Failed to build the application: main.go:4:2:…...
r语言数据分析案例25-基于向量自回归模型的标准普尔 500 指数长期预测与机制分析
一、背景介绍 2007 年的全球经济危机深刻改变了世界经济格局,引发了一系列连锁反应,波及各大洲。经济增长停滞不前,甚至在某些情况下出现负增长,给出口导向型发展中国家带来了不确定性。实体经济受到的冲击尤为严重,生…...
解决使用Jmeter进行测试时出现“302“,‘‘401“等用户未登录的问题
使用 JMeter 压力测试时解决登录问题的两种方法 在使用 JMeter 进行压力测试时,可能会遇程序存在安全验证,必须登录后才能对里面的具体方法进行测试: 如果遇到登录问题,通常是因为 JMeter 无法模拟用户的登录状态,导…...
MySql通过 Procedure 循环删除数据
一、问题描述 在日常使用运维中,一些特殊情况需要批量删除陈旧或异常数据。 如果通过 delete from 【表名】 where 【条件】 直接删除,可能会由于数据量过大,事务执行时间过长,造成死锁。 二、解决方案 通过 Procedure 使用循环…...
Spring Boot 的启动原理、Spring Boot 自动配置原理
Spring Boot启动原理包含自动装配原理。 Spring Boot 的启动原理: 1. 入口类与 SpringApplication 初始化: 应用程序通常从一个带有 SpringBootApplication 注解的主类开始,这个注解是一个组合注解,包含了 SpringBootConfigurat…...
不会开发的你也能管理好企业漏洞,开源免费工具:洞察(insight II)
公司刚开始建设安全管理时,都是从一片混沌开始的,资源总是不够的,我们每个做安全的人员,又要会渗透,又要抓制度,还得管理各种漏洞。在管理楼栋是,我相信大家都遇到过以下几个问题: …...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
