数据结构笔记39-48
碎碎念:想了很久,不知道数据结构这个科目最终该以什么笔记方式呈现出来,是纸质版还是电子版?后来想了又想,还是电子版吧?毕竟和计算机有关~(啊哈哈哈哈哈哈哈)
概率论已经更新完了,不出意料的话,六月末七月初会更新电子技术基础,七月中旬更新计算机组成原理
数据结构45-4分钟搞定堆排序_哔哩哔哩_bilibili
39-48
目录
排序算法
直接插入排序
折半插入排序
编辑
希尔排序
快速排序
简单选择排序
堆排序
插入元素:
删除元素:
归并排序
基数排序
排序算法
直接插入排序
操作流程:
选取19(它是第一个数),并将其作为有序序列
第一轮:
选取35,
并与有序序列(也就是19)进行比较,
35>19,
于是在19的后面。
这样,19和35组成有序序列
第二轮:
选取9,
并与有序序列(也就是19,35)进行比较,
9<35
9<19
于是9放在19前面。
这样9,19,35组成有序序列
第三轮:
选取2,
并与有序序列(也就是9,19,35)进行比较,
2<<35
2<19
2<9
于是2放在9前面。
这样2,9,19,35组成有序序列
以此类推,得到最后结果

折半插入排序
具体看这一步,如何安置15

1.将15放到初始位置,也就是0的位置
2.low指向第一个元素
3.high指向15原来的位置
4.mid=(1+6)/2=3.5 取3,所以指向3的位置

5.15和17进行比较,15<17
6.high=mid-1,high指向2的位置

7.mid=(1+2)/2=1.5 取1 所以指向1的位置
8.15和2进行比较,2<15

9.low = mid+1,low指向2

low和high相等的时候结束了。所以15插入到后面
这些是另外一种思考方式,因为长课程那里的high不是指向元素15,而是指向元素35。
10.mid=(2+2)/2 ,mid指向2
11.15和2比较,15>2
12.low=mid+1
13.low>high,退出循环



希尔排序
1.间隔分组,这里有8个,因为为总长度的一半,因此为4组

2.进行组内排序
7<19
22>15
23<25
17>9
3.再分组,为之前的一半,之前是4组,现在两组


3.进行组内排序
4.再分组,之前是2组,现在就1组

5.组内排序

冒泡排序
比较次数:数组元素-1
7和22进行比较
22和23进行比较
23和17进行比较,需要交换
23和19进行比较,需要交换
23和15进行比较,需要交换
最终23被确定,因此第二轮23不需要参与比较
7和22进行比较
22和17进行比较,需要交换
22和19进行比较,需要交换
22和15进行比较,需要交换
最终22被确定,因此第三轮22不需要参与比较

以此类推

快速排序
1.选取中心轴,一般为首位,这里是元素19 
2.移动high指针,25>19,high指针继续移动,23>19,high指针继续移动,15<19,15拿出来,放到19原本的位置(0索引位置)




3.移动low指针,9<19,7<19,17<19
5.当low=high时,中心轴被确定
第一轮排序结束

第二轮:会分别产生两个low,两个high,缩小范围,以此类推进行排序
简单选择排序

1. 在一堆数中找到最小的,13,然后与第一位进行交换
2.在一堆数中找到最小的,27,然后与第二位进行交换
以此类推
堆排序
我们调整的是大根堆,所以会把最大值放在根节点,且父节点会大于子节点
8/2-1,所以从3号位置开始调整
97>57,不用调整。
3号调整完了,就调整2号。
2号的父节点大于子节点,因此不用调整。
2号调整完了,就调整1号。
父节点小于子节点,因此取子节点中最大值放在1号位,也就是1,3号位置进行交换

1号调整完了,调整0号节点
父节点大于子节点,因此0,1号位置进行交换,

再看一眼,1号节点小于其子节点,因此将1,4号位置进行交换

最后,根节点为最大值,并且所有的父节点都大于其所拥有的子节点,即算完成
(这里的38和57还要对换一下)

插入元素:
插入85
只需要沿着这个根进行调整就好
85>38,85>76

删除元素:
删除堆顶元素97
将最末尾的38放在堆顶,将97拿出来,然后从上到下进行调整
对换的原则是要使得父节点大于子节点

38和其子节点相比,85更大,85和38进行对掉

38和76对掉

38和57对换


归并排序
两两进行比较,7和22,23和17,19和15,25和9

然后再进行7和22和23和17的比较,19和15和25和9的比较

最后进行7和22和23和17和9和15和25和9的比较

基数排序
第一轮,按个位排
第二轮,按十位排
第三轮,按百位排,第三轮就是最后结果

相关文章:
数据结构笔记39-48
碎碎念:想了很久,不知道数据结构这个科目最终该以什么笔记方式呈现出来,是纸质版还是电子版?后来想了又想,还是电子版吧?毕竟和计算机有关~(啊哈哈哈哈哈哈哈) 概率论已经更新完了&…...
2-3 基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合
基于matlab的NSCT-PCNN融合和创新算法(NSCT-ML-PCNN )图像融合。NSSCTest.m文件:用于查看利用NSSC算法分解出的图像并保存。其中的nlevel可调test.m文件:用于产生融合结果,其中一个参数需要设置:Low_Coeffs…...
机器学习笔记 - LoRA:大型语言模型的低秩适应
一、简述 1、模型微调 随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT) 。下图详细概述了此方法的工作原理。 完全微调FFT 的计算成本和资源需求很大,因为更新每…...
基于python实现视频和音频长度对齐合成并添加字幕
在许多视频编辑任务中,我们常常需要将视频和音频进行对齐,并添加字幕。本文将详细介绍如何使用Python实现这一功能,并在视频中添加中文字幕。我们将使用OpenCV处理视频帧,使用MoviePy处理音频和视频的合成,使用PIL库绘…...
爬虫-模拟登陆博客
import requests from bs4 import BeautifulSoupheaders {user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36 } # 登录参数 login_data {log: codetime,pwd: shanbay520,wp-submit: …...
【深度学习】【NLP】Bert理论,代码
论文 : https://arxiv.org/abs/1810.04805 文章目录 一、Bert理论BERT 模型公式1. 输入表示 (Input Representation)2. 自注意力机制 (Self-Attention Mechanism)3. Transformer 层 (Transformer Layer) 二、便于理解Bert的代码1. 自注意力机制2. Transformer 层3. …...
element table 点击某一行中按钮加载
在Element UI中,实现表格(element-table)中的这种功能通常涉及到数据处理和状态管理。当你点击某一行的按钮时,其他行的按钮需要动态地切换为加载状态,这可以通过以下步骤实现: 1.表格组件:使用…...
Linux开机自启/etc/init.d和/etc/rc.d/rc.local
文章目录 /etc/init.d和/etc/rc.d/rc.local的区别/etc/init.dsystemd介绍 /etc/init.d和/etc/rc.d/rc.local的区别 目的不同: /etc/rc.d/rc.local:用于在系统启动后执行用户自定义命令,适合简单的启动任务。 /etc/init.d:用于管理…...
DP:两个数组的dp问题
解决两个数组的dp问题的常用状态表示: 1、选取第一个字符串[0-i]区间以及第二个字符串[0,j]区间作为研究对象 2、根据题目的要求确定状态表示 字符串dp的常见技巧 1、空串是有研究意义的,引入空串可以帮助我们思考虚拟的边界如何进行初始化。 2、如…...
嵌入式Linux:格式化I/O
目录 1、格式化输出函数 1.1、printf()函数 1.2、fprintf()函数 1.3、dprintf()函数 1.4、sprintf()函数 1.5、snprintf()函数 2、格式化输入函数 2.1、scanf()函数 2.2、fscanf()函数 2.3、sscanf()函数 在Linux中,格式化I/O(formatted I/O&a…...
【elementui源码解析】如何实现自动渲染md文档-第二篇
目录 1.概要 2.引用文件 1)components.json 2)json-template/string 3)os.EOL 3.变量定义 4.模版填充 5.MAIN_TEMPLATE填充 6.src下的index.js文件 1)install 2)export 7.总结 1.概要 今天看第二个命令no…...
热门开源项目OpenHarmony
目录 1.概述 1.1.开源项目的意义 1.2.开源项目对软件行业的促进作用 1.3.小结 2.OpenHarmony 2.1.技术架构 2.2.分布式软总线 2.2.1.架构 2.2.2.代码介绍 2.2.2.1.代码目录 2.2.2.2.说明 2.2.2.3.发现组网和传输 2.2.2.3.1.发现 2.2.2.3.2.组网 2.2.2.3.3.传输…...
NewspaceAi之GPT使用新体验
GPT功能 使用地址:https://newspace.ai0.cn/ 上车 挂挡 踩油门,一脚到底,开始你的表演 问题1:你能做什么详细告诉我? 下面内容是GPT的回答 当然!作为一个基于GPT-4架构的AI,我能够在许多方面为…...
详解红黑树
红黑树规则 节点是红色或黑色。根节点是黑色。每个叶子节点都是黑色的空节点(NIL节点)。每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。 红黑树…...
探索JavaScript逆向工程与风控等级
探索JavaScript逆向工程与风控等级 在当今的网络安全领域,JavaScript逆向工程(简称JS逆向)已成为许多开发者和安全专家关注的焦点。JS逆向主要涉及对JavaScript代码的分析与理解,以发现其内部逻辑、数据流及潜在漏洞。这种技术常用…...
C++ 22 之 立方体案例
c22立方体案例.cpp #include <iostream> #include <string>using namespace std;class Cube{ private:int cube_l; // 长int cube_w; // 宽int cube_h; // 高public:// 设置长void set_l(int l){cube_l 1;}// 设置宽void set_w(int w){cube_w w;}// 设置高void …...
vue2使用antv/g6-editor实现可拖拽流程图
依赖下载 照着这个引入就好,然后npm install 源码 <template><div id"vue-g6-editor"><el-row><el-col :span"24"></el-col></el-row><!-- 工具栏 --><el-row><el-col :span"24&qu…...
springboot学习小结
背景 业务上需要开发,组里一位前辈给我指路 spring基础 什么是spring spring提供一个容器称为spring应用上下文,容器里可以创建和管理组件,组件会在容器里装配好,组件也可以叫bean。 装配不由组件创建他依赖的组件࿰…...
vue聊天发送Emoji表情
在用web端写聊天发送表情的功能中,使用web端有系统自带的unicode表情会出现每端不统一的情况,不好用不能统一,在这里我想到了一个非常好的思路,可以解决这个问题! 那就是发送表情用图片的形式呈现,然后发给…...
360数字安全:2024年4月勒索软件流行态势分析报告
勒索软件传播至今,360 反勒索服务已累计接收到数万勒索软件感染求助。随着新型勒索软件的快速蔓延,企业数据泄露风险不断上升,勒索金额在数百万到近亿美元的勒索案件不断出现。勒索软件给企业和个人带来的影响范围越来越广,危害性…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...








